Retain the highest absolute value and return an average value from rows with duplicate index
I have a set of values with duplicate index in a DataFrame:
value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
The required result is to retain only the highest absolute values and return the average values in a new column:
value average
CDE -3.097715 -0.389547
LXU 4.818995 0.513976
SWN -4.349304 -0.644670
OAS -3.336539 -3.336539
LPI -5.701044 -4.086021
CZR -3.270018 -3.163365
I have tried to .apply(lambda) to the duplicate rows but got an "axis" error:
max_absolute = lambda x: max(x.min(), x.max(), key=abs)
df_duplicate_absmax = df.groupby(df.index).apply(max_absolute, axis=1)
ps: Adapting Abhi's solution to work with NaN:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x[~np.isnan(x)], key=abs), 'mean'])
python python-3.x pandas dataframe pandas-groupby
add a comment |
I have a set of values with duplicate index in a DataFrame:
value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
The required result is to retain only the highest absolute values and return the average values in a new column:
value average
CDE -3.097715 -0.389547
LXU 4.818995 0.513976
SWN -4.349304 -0.644670
OAS -3.336539 -3.336539
LPI -5.701044 -4.086021
CZR -3.270018 -3.163365
I have tried to .apply(lambda) to the duplicate rows but got an "axis" error:
max_absolute = lambda x: max(x.min(), x.max(), key=abs)
df_duplicate_absmax = df.groupby(df.index).apply(max_absolute, axis=1)
ps: Adapting Abhi's solution to work with NaN:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x[~np.isnan(x)], key=abs), 'mean'])
python python-3.x pandas dataframe pandas-groupby
add a comment |
I have a set of values with duplicate index in a DataFrame:
value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
The required result is to retain only the highest absolute values and return the average values in a new column:
value average
CDE -3.097715 -0.389547
LXU 4.818995 0.513976
SWN -4.349304 -0.644670
OAS -3.336539 -3.336539
LPI -5.701044 -4.086021
CZR -3.270018 -3.163365
I have tried to .apply(lambda) to the duplicate rows but got an "axis" error:
max_absolute = lambda x: max(x.min(), x.max(), key=abs)
df_duplicate_absmax = df.groupby(df.index).apply(max_absolute, axis=1)
ps: Adapting Abhi's solution to work with NaN:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x[~np.isnan(x)], key=abs), 'mean'])
python python-3.x pandas dataframe pandas-groupby
I have a set of values with duplicate index in a DataFrame:
value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
The required result is to retain only the highest absolute values and return the average values in a new column:
value average
CDE -3.097715 -0.389547
LXU 4.818995 0.513976
SWN -4.349304 -0.644670
OAS -3.336539 -3.336539
LPI -5.701044 -4.086021
CZR -3.270018 -3.163365
I have tried to .apply(lambda) to the duplicate rows but got an "axis" error:
max_absolute = lambda x: max(x.min(), x.max(), key=abs)
df_duplicate_absmax = df.groupby(df.index).apply(max_absolute, axis=1)
ps: Adapting Abhi's solution to work with NaN:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x[~np.isnan(x)], key=abs), 'mean'])
python python-3.x pandas dataframe pandas-groupby
python python-3.x pandas dataframe pandas-groupby
edited Dec 30 '18 at 5:18
artDeco
asked Dec 9 '18 at 1:19
artDecoartDeco
185214
185214
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Use:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x,key=abs), 'mean'])
df1.columns = ['value', 'average']
print (df1)
value average
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (max
) with Pandas series / NumPy arrays, (2) usinggroupby
twice when a singlegroupby
is sufficient.
– jpp
Dec 9 '18 at 1:56
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
Nice!. Note that columns can be named directly in .agg like.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
add a comment |
Here's a solution using groupby
+ agg
with two functions, one to calculate the maximum by absolute value, the other to calculate the mean:
def max_abs(x):
return x.iloc[x.abs().values.argmax()]
res = df.groupby(level=0).agg([max_abs, 'mean'])
.xs('value', axis=1, drop_level=True)
print(res)
max_abs mean
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
add a comment |
from io import StringIO
import pandas as pd
df = pd.read_fwf(StringIO("""
cod value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
"""), header=1, Index=None)
# Create a new column with absoulte value
df['abs_value'] = df['value'].abs()
# Calulate the mean in new data farame, grouped by code using
# pandas groupped aggregation naming the column average
df_avg = df.groupby("cod").value.agg([('average', 'mean')])
# Choose the row within group with largest abs value
df_abs = df.sort_values("abs_value").groupby("cod").tail(1)[["cod", "value"]]
# Join the average and the max
df_abs.join(df_avg, on="cod")
Result:
cod value average
1 CDE -3.097715 -0.389547
10 CZR -3.270018 -3.163365
6 OAS -3.336539 -3.336539
5 SWN -4.349304 -0.644670
3 LXU 4.818995 0.513976
8 LPI -5.701044 -4.086021
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53688581%2fretain-the-highest-absolute-value-and-return-an-average-value-from-rows-with-dup%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x,key=abs), 'mean'])
df1.columns = ['value', 'average']
print (df1)
value average
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (max
) with Pandas series / NumPy arrays, (2) usinggroupby
twice when a singlegroupby
is sufficient.
– jpp
Dec 9 '18 at 1:56
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
Nice!. Note that columns can be named directly in .agg like.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
add a comment |
Use:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x,key=abs), 'mean'])
df1.columns = ['value', 'average']
print (df1)
value average
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (max
) with Pandas series / NumPy arrays, (2) usinggroupby
twice when a singlegroupby
is sufficient.
– jpp
Dec 9 '18 at 1:56
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
Nice!. Note that columns can be named directly in .agg like.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
add a comment |
Use:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x,key=abs), 'mean'])
df1.columns = ['value', 'average']
print (df1)
value average
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
Use:
df1 = df.groupby(df.index)['value'].agg([lambda x: max(x,key=abs), 'mean'])
df1.columns = ['value', 'average']
print (df1)
value average
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
edited Dec 9 '18 at 2:14
answered Dec 9 '18 at 1:27
AbhiAbhi
2,480320
2,480320
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (max
) with Pandas series / NumPy arrays, (2) usinggroupby
twice when a singlegroupby
is sufficient.
– jpp
Dec 9 '18 at 1:56
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
Nice!. Note that columns can be named directly in .agg like.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
add a comment |
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (max
) with Pandas series / NumPy arrays, (2) usinggroupby
twice when a singlegroupby
is sufficient.
– jpp
Dec 9 '18 at 1:56
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
Nice!. Note that columns can be named directly in .agg like.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
1
1
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (
max
) with Pandas series / NumPy arrays, (2) using groupby
twice when a single groupby
is sufficient.– jpp
Dec 9 '18 at 1:56
There are two reasons why this solution is inefficient: (1) using pure Python built-ins (
max
) with Pandas series / NumPy arrays, (2) using groupby
twice when a single groupby
is sufficient.– jpp
Dec 9 '18 at 1:56
3
3
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
Good solution, Abhi with thanks :) I appreciate the use of max_absolute lambda function for simplicity!
– artDeco
Dec 9 '18 at 2:10
2
2
Nice!. Note that columns can be named directly in .agg like
.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
Nice!. Note that columns can be named directly in .agg like
.agg([('value', lambda x: max(x,key=abs)), ('average', 'mean')])
– Andrew Lavers
Dec 9 '18 at 12:05
1
1
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
Excellent, Andrew Lavers for adding value to a good solution! Thanks :)
– artDeco
Dec 9 '18 at 12:58
add a comment |
Here's a solution using groupby
+ agg
with two functions, one to calculate the maximum by absolute value, the other to calculate the mean:
def max_abs(x):
return x.iloc[x.abs().values.argmax()]
res = df.groupby(level=0).agg([max_abs, 'mean'])
.xs('value', axis=1, drop_level=True)
print(res)
max_abs mean
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
add a comment |
Here's a solution using groupby
+ agg
with two functions, one to calculate the maximum by absolute value, the other to calculate the mean:
def max_abs(x):
return x.iloc[x.abs().values.argmax()]
res = df.groupby(level=0).agg([max_abs, 'mean'])
.xs('value', axis=1, drop_level=True)
print(res)
max_abs mean
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
add a comment |
Here's a solution using groupby
+ agg
with two functions, one to calculate the maximum by absolute value, the other to calculate the mean:
def max_abs(x):
return x.iloc[x.abs().values.argmax()]
res = df.groupby(level=0).agg([max_abs, 'mean'])
.xs('value', axis=1, drop_level=True)
print(res)
max_abs mean
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
Here's a solution using groupby
+ agg
with two functions, one to calculate the maximum by absolute value, the other to calculate the mean:
def max_abs(x):
return x.iloc[x.abs().values.argmax()]
res = df.groupby(level=0).agg([max_abs, 'mean'])
.xs('value', axis=1, drop_level=True)
print(res)
max_abs mean
CDE -3.097715 -0.389547
CZR -3.270018 -3.163365
LPI -5.701044 -4.086021
LXU 4.818995 0.513976
OAS -3.336539 -3.336539
SWN -4.349304 -0.644670
answered Dec 9 '18 at 1:53
jppjpp
97.9k2159109
97.9k2159109
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
add a comment |
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
1
1
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
That's great, jpp - very Pythonic!
– artDeco
Dec 9 '18 at 2:11
1
1
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
I also like your use of .xs() and the MultiIndex address, jpp :)
– artDeco
Dec 10 '18 at 1:00
add a comment |
from io import StringIO
import pandas as pd
df = pd.read_fwf(StringIO("""
cod value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
"""), header=1, Index=None)
# Create a new column with absoulte value
df['abs_value'] = df['value'].abs()
# Calulate the mean in new data farame, grouped by code using
# pandas groupped aggregation naming the column average
df_avg = df.groupby("cod").value.agg([('average', 'mean')])
# Choose the row within group with largest abs value
df_abs = df.sort_values("abs_value").groupby("cod").tail(1)[["cod", "value"]]
# Join the average and the max
df_abs.join(df_avg, on="cod")
Result:
cod value average
1 CDE -3.097715 -0.389547
10 CZR -3.270018 -3.163365
6 OAS -3.336539 -3.336539
5 SWN -4.349304 -0.644670
3 LXU 4.818995 0.513976
8 LPI -5.701044 -4.086021
add a comment |
from io import StringIO
import pandas as pd
df = pd.read_fwf(StringIO("""
cod value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
"""), header=1, Index=None)
# Create a new column with absoulte value
df['abs_value'] = df['value'].abs()
# Calulate the mean in new data farame, grouped by code using
# pandas groupped aggregation naming the column average
df_avg = df.groupby("cod").value.agg([('average', 'mean')])
# Choose the row within group with largest abs value
df_abs = df.sort_values("abs_value").groupby("cod").tail(1)[["cod", "value"]]
# Join the average and the max
df_abs.join(df_avg, on="cod")
Result:
cod value average
1 CDE -3.097715 -0.389547
10 CZR -3.270018 -3.163365
6 OAS -3.336539 -3.336539
5 SWN -4.349304 -0.644670
3 LXU 4.818995 0.513976
8 LPI -5.701044 -4.086021
add a comment |
from io import StringIO
import pandas as pd
df = pd.read_fwf(StringIO("""
cod value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
"""), header=1, Index=None)
# Create a new column with absoulte value
df['abs_value'] = df['value'].abs()
# Calulate the mean in new data farame, grouped by code using
# pandas groupped aggregation naming the column average
df_avg = df.groupby("cod").value.agg([('average', 'mean')])
# Choose the row within group with largest abs value
df_abs = df.sort_values("abs_value").groupby("cod").tail(1)[["cod", "value"]]
# Join the average and the max
df_abs.join(df_avg, on="cod")
Result:
cod value average
1 CDE -3.097715 -0.389547
10 CZR -3.270018 -3.163365
6 OAS -3.336539 -3.336539
5 SWN -4.349304 -0.644670
3 LXU 4.818995 0.513976
8 LPI -5.701044 -4.086021
from io import StringIO
import pandas as pd
df = pd.read_fwf(StringIO("""
cod value
CDE 2.318620
CDE -3.097715
LXU -3.791043
LXU 4.818995
SWN 3.059964
SWN -4.349304
OAS -3.336539
LPI -3.037097
LPI -5.701044
LPI -3.519923
CZR -3.270018
CZR -3.056712
"""), header=1, Index=None)
# Create a new column with absoulte value
df['abs_value'] = df['value'].abs()
# Calulate the mean in new data farame, grouped by code using
# pandas groupped aggregation naming the column average
df_avg = df.groupby("cod").value.agg([('average', 'mean')])
# Choose the row within group with largest abs value
df_abs = df.sort_values("abs_value").groupby("cod").tail(1)[["cod", "value"]]
# Join the average and the max
df_abs.join(df_avg, on="cod")
Result:
cod value average
1 CDE -3.097715 -0.389547
10 CZR -3.270018 -3.163365
6 OAS -3.336539 -3.336539
5 SWN -4.349304 -0.644670
3 LXU 4.818995 0.513976
8 LPI -5.701044 -4.086021
answered Dec 9 '18 at 1:59
Andrew LaversAndrew Lavers
3,0511713
3,0511713
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53688581%2fretain-the-highest-absolute-value-and-return-an-average-value-from-rows-with-dup%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown