How to include the interaction between a covariate and time for a non-proportional hazards model?
How to include the interaction between a covariate and and time for a non-proportional hazards model?
I often find that the proportional hazards assumption for the Cox regressions doesn’t hold.
Take the following data as an example.
> head(data2)
no np_p age_dx1 race1 mr_dx er_1 pr_1 sct_1 surv_mo km_stts1
1 20 1 2 4 1 2 2 4 52 1
2 33 1 3 1 2 1 2 1 11 1
3 67 1 2 4 4 1 1 3 20 1
4 90 1 3 1 3 3 3 2 11 1
5 143 1 2 4 3 1 1 2 123 0
6 180 1 3 1 3 1 1 2 9 1
First, I fitted a Cox regression model.
> fit2 <- coxph(Surv(surv_mo, km_stts1) ~ np_p + age_dx1 + race1 + mr_dx + er_1 + pr_1 + sct_1, data = data)
Second, I assessed the proportional hazards assumption.
> check_PH2 <- cox.zph(fit2, transform = "km")
> check_PH2
rho chisq p
np_p 0.00946 0.0748 7.84e-01
age_dx1 -0.00889 0.0640 8.00e-01
race1 -0.03148 0.7827 3.76e-01
mr_dx -0.03120 0.7607 3.83e-01
er_1 -0.14741 18.5972 1.61e-05
pr_1 0.05906 2.9330 8.68e-02
sct_1 0.17651 23.8030 1.07e-06
GLOBAL NA 53.2844 3.26e-09
So, this means that the hazard function of er_1 and sct_1 were nonproportional over time (Right?).
In my opinion, I can include the interaction between these two covariates and time seperately in the model. But I don't know how to perform it using R.
Thank you.
r cox-regression
add a comment |
How to include the interaction between a covariate and and time for a non-proportional hazards model?
I often find that the proportional hazards assumption for the Cox regressions doesn’t hold.
Take the following data as an example.
> head(data2)
no np_p age_dx1 race1 mr_dx er_1 pr_1 sct_1 surv_mo km_stts1
1 20 1 2 4 1 2 2 4 52 1
2 33 1 3 1 2 1 2 1 11 1
3 67 1 2 4 4 1 1 3 20 1
4 90 1 3 1 3 3 3 2 11 1
5 143 1 2 4 3 1 1 2 123 0
6 180 1 3 1 3 1 1 2 9 1
First, I fitted a Cox regression model.
> fit2 <- coxph(Surv(surv_mo, km_stts1) ~ np_p + age_dx1 + race1 + mr_dx + er_1 + pr_1 + sct_1, data = data)
Second, I assessed the proportional hazards assumption.
> check_PH2 <- cox.zph(fit2, transform = "km")
> check_PH2
rho chisq p
np_p 0.00946 0.0748 7.84e-01
age_dx1 -0.00889 0.0640 8.00e-01
race1 -0.03148 0.7827 3.76e-01
mr_dx -0.03120 0.7607 3.83e-01
er_1 -0.14741 18.5972 1.61e-05
pr_1 0.05906 2.9330 8.68e-02
sct_1 0.17651 23.8030 1.07e-06
GLOBAL NA 53.2844 3.26e-09
So, this means that the hazard function of er_1 and sct_1 were nonproportional over time (Right?).
In my opinion, I can include the interaction between these two covariates and time seperately in the model. But I don't know how to perform it using R.
Thank you.
r cox-regression
In R, an interaction is denoted using a*
symbol. Is this what you're after?
– Roman Luštrik
Dec 31 '18 at 10:49
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08
add a comment |
How to include the interaction between a covariate and and time for a non-proportional hazards model?
I often find that the proportional hazards assumption for the Cox regressions doesn’t hold.
Take the following data as an example.
> head(data2)
no np_p age_dx1 race1 mr_dx er_1 pr_1 sct_1 surv_mo km_stts1
1 20 1 2 4 1 2 2 4 52 1
2 33 1 3 1 2 1 2 1 11 1
3 67 1 2 4 4 1 1 3 20 1
4 90 1 3 1 3 3 3 2 11 1
5 143 1 2 4 3 1 1 2 123 0
6 180 1 3 1 3 1 1 2 9 1
First, I fitted a Cox regression model.
> fit2 <- coxph(Surv(surv_mo, km_stts1) ~ np_p + age_dx1 + race1 + mr_dx + er_1 + pr_1 + sct_1, data = data)
Second, I assessed the proportional hazards assumption.
> check_PH2 <- cox.zph(fit2, transform = "km")
> check_PH2
rho chisq p
np_p 0.00946 0.0748 7.84e-01
age_dx1 -0.00889 0.0640 8.00e-01
race1 -0.03148 0.7827 3.76e-01
mr_dx -0.03120 0.7607 3.83e-01
er_1 -0.14741 18.5972 1.61e-05
pr_1 0.05906 2.9330 8.68e-02
sct_1 0.17651 23.8030 1.07e-06
GLOBAL NA 53.2844 3.26e-09
So, this means that the hazard function of er_1 and sct_1 were nonproportional over time (Right?).
In my opinion, I can include the interaction between these two covariates and time seperately in the model. But I don't know how to perform it using R.
Thank you.
r cox-regression
How to include the interaction between a covariate and and time for a non-proportional hazards model?
I often find that the proportional hazards assumption for the Cox regressions doesn’t hold.
Take the following data as an example.
> head(data2)
no np_p age_dx1 race1 mr_dx er_1 pr_1 sct_1 surv_mo km_stts1
1 20 1 2 4 1 2 2 4 52 1
2 33 1 3 1 2 1 2 1 11 1
3 67 1 2 4 4 1 1 3 20 1
4 90 1 3 1 3 3 3 2 11 1
5 143 1 2 4 3 1 1 2 123 0
6 180 1 3 1 3 1 1 2 9 1
First, I fitted a Cox regression model.
> fit2 <- coxph(Surv(surv_mo, km_stts1) ~ np_p + age_dx1 + race1 + mr_dx + er_1 + pr_1 + sct_1, data = data)
Second, I assessed the proportional hazards assumption.
> check_PH2 <- cox.zph(fit2, transform = "km")
> check_PH2
rho chisq p
np_p 0.00946 0.0748 7.84e-01
age_dx1 -0.00889 0.0640 8.00e-01
race1 -0.03148 0.7827 3.76e-01
mr_dx -0.03120 0.7607 3.83e-01
er_1 -0.14741 18.5972 1.61e-05
pr_1 0.05906 2.9330 8.68e-02
sct_1 0.17651 23.8030 1.07e-06
GLOBAL NA 53.2844 3.26e-09
So, this means that the hazard function of er_1 and sct_1 were nonproportional over time (Right?).
In my opinion, I can include the interaction between these two covariates and time seperately in the model. But I don't know how to perform it using R.
Thank you.
r cox-regression
r cox-regression
asked Dec 31 '18 at 9:25
Lin CaijinLin Caijin
12
12
In R, an interaction is denoted using a*
symbol. Is this what you're after?
– Roman Luštrik
Dec 31 '18 at 10:49
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08
add a comment |
In R, an interaction is denoted using a*
symbol. Is this what you're after?
– Roman Luštrik
Dec 31 '18 at 10:49
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08
In R, an interaction is denoted using a
*
symbol. Is this what you're after?– Roman Luštrik
Dec 31 '18 at 10:49
In R, an interaction is denoted using a
*
symbol. Is this what you're after?– Roman Luštrik
Dec 31 '18 at 10:49
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53985737%2fhow-to-include-the-interaction-between-a-covariate-and-time-for-a-non-proportion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53985737%2fhow-to-include-the-interaction-between-a-covariate-and-time-for-a-non-proportion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
In R, an interaction is denoted using a
*
symbol. Is this what you're after?– Roman Luštrik
Dec 31 '18 at 10:49
@RomanLuštrik Thank you for your answer. In other words, I want to know how to deal with the non-proportionality in the Cox regression model when the assumption is not met. I've read many papers including interactions between time and the covariate in this situation.
– Lin Caijin
Dec 31 '18 at 12:08