Using Apache math for linear regression with weights
I've been using Apache math for a while to do a multiple linear regression using OLSMultipleLinearRegression. Now I need to extend my solution to include a weighting factor for each data point.
I'm trying to replicate the MATLAB function fitlm.
I have a MATLAB call like:
table_data = table(points_scored, height, weight, age);
model = fitlm( table_data, 'points_scored ~ -1, height, weight, age', 'Weights', data_weights)
From 'model' I get the regression coefficients for height, weight, age.
In Java the code I have now is (roughly):
double variables = double[grades.length][3];
// Fill in variables for height, weight, age,
...
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
regression.setNoIntercept(true);
regression.newSampleData(points_scored, variables);
There does not appear to be a way to add weightings to OLSMultipleLinearRegression. There does appear to be a way to add weights to the LeastSquaresBuilder. However I'm having trouble figuring out exactly how to use this. My biggest problem (I think) is creating the jacobians that are expected.
Here is most of what I tried:
double points_scored = //fill in points scored
double height = //fill in
double weight = //fill in
double age = // fill in
MultivariateJacobianFunction distToResidual= coeffs -> {
RealVector value = new ArrayRealVector(points_scored.length);
RealMatrix jacobian = new Array2DRowRealMatrix(points_scored.length, 3);
for (int i = 0; i < measures.length; ++i) {
double residual = points_scored[i];
residual -= coeffs.getEntry(0) * height[i];
residual -= coeffs.getEntry(1) * weight[i];
residual -= coeffs.getEntry(2) * age[i];
value.setEntry(i, residual);
//No idea how to set up the jacobian here
}
return new Pair<RealVector, RealMatrix>(value, jacobian);
};
double prescribedDistancesToLine = new double[measures.length];
Arrays.fill(prescribedDistancesToLine, 0);
double starts = new double {1, 1, 1};
LeastSquaresProblem problem = new LeastSquaresBuilder().
start(starts).
model(distToResidual).
target(prescribedDistancesToLine).
lazyEvaluation(false).
maxEvaluations(1000).
maxIterations(1000).
build();
LeastSquaresOptimizer.Optimum optimum = new LevenbergMarquardtOptimizer().optimize(problem);
Since I don't know how to make the jacobian values I've just been stabbing in the dark and getting coefficient nowhere near the MATLAB answers. Once I get this part working I know that adding the weights should be a pretty straight forward extra line int the LeastSquaresBuilder.
Thanks for any help in advance!
java linear-regression apache-commons-math
add a comment |
I've been using Apache math for a while to do a multiple linear regression using OLSMultipleLinearRegression. Now I need to extend my solution to include a weighting factor for each data point.
I'm trying to replicate the MATLAB function fitlm.
I have a MATLAB call like:
table_data = table(points_scored, height, weight, age);
model = fitlm( table_data, 'points_scored ~ -1, height, weight, age', 'Weights', data_weights)
From 'model' I get the regression coefficients for height, weight, age.
In Java the code I have now is (roughly):
double variables = double[grades.length][3];
// Fill in variables for height, weight, age,
...
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
regression.setNoIntercept(true);
regression.newSampleData(points_scored, variables);
There does not appear to be a way to add weightings to OLSMultipleLinearRegression. There does appear to be a way to add weights to the LeastSquaresBuilder. However I'm having trouble figuring out exactly how to use this. My biggest problem (I think) is creating the jacobians that are expected.
Here is most of what I tried:
double points_scored = //fill in points scored
double height = //fill in
double weight = //fill in
double age = // fill in
MultivariateJacobianFunction distToResidual= coeffs -> {
RealVector value = new ArrayRealVector(points_scored.length);
RealMatrix jacobian = new Array2DRowRealMatrix(points_scored.length, 3);
for (int i = 0; i < measures.length; ++i) {
double residual = points_scored[i];
residual -= coeffs.getEntry(0) * height[i];
residual -= coeffs.getEntry(1) * weight[i];
residual -= coeffs.getEntry(2) * age[i];
value.setEntry(i, residual);
//No idea how to set up the jacobian here
}
return new Pair<RealVector, RealMatrix>(value, jacobian);
};
double prescribedDistancesToLine = new double[measures.length];
Arrays.fill(prescribedDistancesToLine, 0);
double starts = new double {1, 1, 1};
LeastSquaresProblem problem = new LeastSquaresBuilder().
start(starts).
model(distToResidual).
target(prescribedDistancesToLine).
lazyEvaluation(false).
maxEvaluations(1000).
maxIterations(1000).
build();
LeastSquaresOptimizer.Optimum optimum = new LevenbergMarquardtOptimizer().optimize(problem);
Since I don't know how to make the jacobian values I've just been stabbing in the dark and getting coefficient nowhere near the MATLAB answers. Once I get this part working I know that adding the weights should be a pretty straight forward extra line int the LeastSquaresBuilder.
Thanks for any help in advance!
java linear-regression apache-commons-math
add a comment |
I've been using Apache math for a while to do a multiple linear regression using OLSMultipleLinearRegression. Now I need to extend my solution to include a weighting factor for each data point.
I'm trying to replicate the MATLAB function fitlm.
I have a MATLAB call like:
table_data = table(points_scored, height, weight, age);
model = fitlm( table_data, 'points_scored ~ -1, height, weight, age', 'Weights', data_weights)
From 'model' I get the regression coefficients for height, weight, age.
In Java the code I have now is (roughly):
double variables = double[grades.length][3];
// Fill in variables for height, weight, age,
...
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
regression.setNoIntercept(true);
regression.newSampleData(points_scored, variables);
There does not appear to be a way to add weightings to OLSMultipleLinearRegression. There does appear to be a way to add weights to the LeastSquaresBuilder. However I'm having trouble figuring out exactly how to use this. My biggest problem (I think) is creating the jacobians that are expected.
Here is most of what I tried:
double points_scored = //fill in points scored
double height = //fill in
double weight = //fill in
double age = // fill in
MultivariateJacobianFunction distToResidual= coeffs -> {
RealVector value = new ArrayRealVector(points_scored.length);
RealMatrix jacobian = new Array2DRowRealMatrix(points_scored.length, 3);
for (int i = 0; i < measures.length; ++i) {
double residual = points_scored[i];
residual -= coeffs.getEntry(0) * height[i];
residual -= coeffs.getEntry(1) * weight[i];
residual -= coeffs.getEntry(2) * age[i];
value.setEntry(i, residual);
//No idea how to set up the jacobian here
}
return new Pair<RealVector, RealMatrix>(value, jacobian);
};
double prescribedDistancesToLine = new double[measures.length];
Arrays.fill(prescribedDistancesToLine, 0);
double starts = new double {1, 1, 1};
LeastSquaresProblem problem = new LeastSquaresBuilder().
start(starts).
model(distToResidual).
target(prescribedDistancesToLine).
lazyEvaluation(false).
maxEvaluations(1000).
maxIterations(1000).
build();
LeastSquaresOptimizer.Optimum optimum = new LevenbergMarquardtOptimizer().optimize(problem);
Since I don't know how to make the jacobian values I've just been stabbing in the dark and getting coefficient nowhere near the MATLAB answers. Once I get this part working I know that adding the weights should be a pretty straight forward extra line int the LeastSquaresBuilder.
Thanks for any help in advance!
java linear-regression apache-commons-math
I've been using Apache math for a while to do a multiple linear regression using OLSMultipleLinearRegression. Now I need to extend my solution to include a weighting factor for each data point.
I'm trying to replicate the MATLAB function fitlm.
I have a MATLAB call like:
table_data = table(points_scored, height, weight, age);
model = fitlm( table_data, 'points_scored ~ -1, height, weight, age', 'Weights', data_weights)
From 'model' I get the regression coefficients for height, weight, age.
In Java the code I have now is (roughly):
double variables = double[grades.length][3];
// Fill in variables for height, weight, age,
...
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
regression.setNoIntercept(true);
regression.newSampleData(points_scored, variables);
There does not appear to be a way to add weightings to OLSMultipleLinearRegression. There does appear to be a way to add weights to the LeastSquaresBuilder. However I'm having trouble figuring out exactly how to use this. My biggest problem (I think) is creating the jacobians that are expected.
Here is most of what I tried:
double points_scored = //fill in points scored
double height = //fill in
double weight = //fill in
double age = // fill in
MultivariateJacobianFunction distToResidual= coeffs -> {
RealVector value = new ArrayRealVector(points_scored.length);
RealMatrix jacobian = new Array2DRowRealMatrix(points_scored.length, 3);
for (int i = 0; i < measures.length; ++i) {
double residual = points_scored[i];
residual -= coeffs.getEntry(0) * height[i];
residual -= coeffs.getEntry(1) * weight[i];
residual -= coeffs.getEntry(2) * age[i];
value.setEntry(i, residual);
//No idea how to set up the jacobian here
}
return new Pair<RealVector, RealMatrix>(value, jacobian);
};
double prescribedDistancesToLine = new double[measures.length];
Arrays.fill(prescribedDistancesToLine, 0);
double starts = new double {1, 1, 1};
LeastSquaresProblem problem = new LeastSquaresBuilder().
start(starts).
model(distToResidual).
target(prescribedDistancesToLine).
lazyEvaluation(false).
maxEvaluations(1000).
maxIterations(1000).
build();
LeastSquaresOptimizer.Optimum optimum = new LevenbergMarquardtOptimizer().optimize(problem);
Since I don't know how to make the jacobian values I've just been stabbing in the dark and getting coefficient nowhere near the MATLAB answers. Once I get this part working I know that adding the weights should be a pretty straight forward extra line int the LeastSquaresBuilder.
Thanks for any help in advance!
java linear-regression apache-commons-math
java linear-regression apache-commons-math
asked Jan 3 at 17:07
robkinrobkin
414
414
add a comment |
add a comment |
0
active
oldest
votes
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54026757%2fusing-apache-math-for-linear-regression-with-weights%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54026757%2fusing-apache-math-for-linear-regression-with-weights%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown