Aggregate numpy array dynamically (aggregation function is parameterized)
Aggregate a set of values with a parameterized aggregation function.
I have a numpy array of numeric values, and an aggregation function which is a parameter (options are sum, count, avg, max, min, etc.). How can I apply this aggregation function dynamically in the code ?
combined_vals_list = [1,2,3]
vals_df = pd.DataFrame({'values': combined_vals_list , 'group': [1]*len(combined_vals_list)})
agg_col_query_value =
vals_df.groupby('group').aggregate(agg).iloc[0,0]
the expected result is 6 and my code returns 6 , but this way of using pandas seem cumbersome.
Any better and more efficient simpler way ?
python-3.x pandas numpy
add a comment |
Aggregate a set of values with a parameterized aggregation function.
I have a numpy array of numeric values, and an aggregation function which is a parameter (options are sum, count, avg, max, min, etc.). How can I apply this aggregation function dynamically in the code ?
combined_vals_list = [1,2,3]
vals_df = pd.DataFrame({'values': combined_vals_list , 'group': [1]*len(combined_vals_list)})
agg_col_query_value =
vals_df.groupby('group').aggregate(agg).iloc[0,0]
the expected result is 6 and my code returns 6 , but this way of using pandas seem cumbersome.
Any better and more efficient simpler way ?
python-3.x pandas numpy
2
You can do something like adict
of strings to functions, but in Pandas you can also just write it likepd.Series([1, 2, 3]).aggregate('sum')
.
– jdehesa
Jan 3 at 12:58
add a comment |
Aggregate a set of values with a parameterized aggregation function.
I have a numpy array of numeric values, and an aggregation function which is a parameter (options are sum, count, avg, max, min, etc.). How can I apply this aggregation function dynamically in the code ?
combined_vals_list = [1,2,3]
vals_df = pd.DataFrame({'values': combined_vals_list , 'group': [1]*len(combined_vals_list)})
agg_col_query_value =
vals_df.groupby('group').aggregate(agg).iloc[0,0]
the expected result is 6 and my code returns 6 , but this way of using pandas seem cumbersome.
Any better and more efficient simpler way ?
python-3.x pandas numpy
Aggregate a set of values with a parameterized aggregation function.
I have a numpy array of numeric values, and an aggregation function which is a parameter (options are sum, count, avg, max, min, etc.). How can I apply this aggregation function dynamically in the code ?
combined_vals_list = [1,2,3]
vals_df = pd.DataFrame({'values': combined_vals_list , 'group': [1]*len(combined_vals_list)})
agg_col_query_value =
vals_df.groupby('group').aggregate(agg).iloc[0,0]
the expected result is 6 and my code returns 6 , but this way of using pandas seem cumbersome.
Any better and more efficient simpler way ?
python-3.x pandas numpy
python-3.x pandas numpy
asked Jan 3 at 11:42
RNNRNN
52
52
2
You can do something like adict
of strings to functions, but in Pandas you can also just write it likepd.Series([1, 2, 3]).aggregate('sum')
.
– jdehesa
Jan 3 at 12:58
add a comment |
2
You can do something like adict
of strings to functions, but in Pandas you can also just write it likepd.Series([1, 2, 3]).aggregate('sum')
.
– jdehesa
Jan 3 at 12:58
2
2
You can do something like a
dict
of strings to functions, but in Pandas you can also just write it like pd.Series([1, 2, 3]).aggregate('sum')
.– jdehesa
Jan 3 at 12:58
You can do something like a
dict
of strings to functions, but in Pandas you can also just write it like pd.Series([1, 2, 3]).aggregate('sum')
.– jdehesa
Jan 3 at 12:58
add a comment |
1 Answer
1
active
oldest
votes
it seems that pandas apparently the best way to achieve dynamic parameterized aggregation
pd.Series([1, 2, 3]).aggregate('sum') per jdehesa comment
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54021598%2faggregate-numpy-array-dynamically-aggregation-function-is-parameterized%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
it seems that pandas apparently the best way to achieve dynamic parameterized aggregation
pd.Series([1, 2, 3]).aggregate('sum') per jdehesa comment
add a comment |
it seems that pandas apparently the best way to achieve dynamic parameterized aggregation
pd.Series([1, 2, 3]).aggregate('sum') per jdehesa comment
add a comment |
it seems that pandas apparently the best way to achieve dynamic parameterized aggregation
pd.Series([1, 2, 3]).aggregate('sum') per jdehesa comment
it seems that pandas apparently the best way to achieve dynamic parameterized aggregation
pd.Series([1, 2, 3]).aggregate('sum') per jdehesa comment
answered Jan 7 at 8:23
RNNRNN
52
52
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54021598%2faggregate-numpy-array-dynamically-aggregation-function-is-parameterized%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
You can do something like a
dict
of strings to functions, but in Pandas you can also just write it likepd.Series([1, 2, 3]).aggregate('sum')
.– jdehesa
Jan 3 at 12:58