Probelem with Pandas dataframe merge












0















I tried to us the pandas merge function but I got an keyerror message. The keys have the same type and the same name, what could be the problem:
My code is here:



print(data_EURUSD.head())
print(data_XAUUSD.head())
print(data_EURUSD.index)
print(data_XAUUSD.index)

data=pd.merge(data_EURUSD, data_XAUUSD, on='date', how='left')

print(data)


The result:



                 askclose

date
2017-05-19 21:00:00 1.12090
2017-05-21 21:00:00 1.11999
2017-05-22 21:00:00 1.12402
2017-05-23 21:00:00 1.11840
2017-05-24 21:00:00 1.12195

askclose
date
2017-01-20 22:00:00 1209.47
2017-01-23 22:00:00 1218.46
2017-01-24 22:00:00 1209.41
2017-01-25 22:00:00 1201.18
2017-01-26 22:00:00 1189.04

DatetimeIndex(['2017-05-19 21:00:00', '2017-05-21 21:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

DatetimeIndex(['2017-01-20 22:00:00', '2017-01-23 22:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

....

KeyError: 'date'









share|improve this question























  • Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

    – Lucas H
    Dec 28 '18 at 16:44
















0















I tried to us the pandas merge function but I got an keyerror message. The keys have the same type and the same name, what could be the problem:
My code is here:



print(data_EURUSD.head())
print(data_XAUUSD.head())
print(data_EURUSD.index)
print(data_XAUUSD.index)

data=pd.merge(data_EURUSD, data_XAUUSD, on='date', how='left')

print(data)


The result:



                 askclose

date
2017-05-19 21:00:00 1.12090
2017-05-21 21:00:00 1.11999
2017-05-22 21:00:00 1.12402
2017-05-23 21:00:00 1.11840
2017-05-24 21:00:00 1.12195

askclose
date
2017-01-20 22:00:00 1209.47
2017-01-23 22:00:00 1218.46
2017-01-24 22:00:00 1209.41
2017-01-25 22:00:00 1201.18
2017-01-26 22:00:00 1189.04

DatetimeIndex(['2017-05-19 21:00:00', '2017-05-21 21:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

DatetimeIndex(['2017-01-20 22:00:00', '2017-01-23 22:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

....

KeyError: 'date'









share|improve this question























  • Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

    – Lucas H
    Dec 28 '18 at 16:44














0












0








0








I tried to us the pandas merge function but I got an keyerror message. The keys have the same type and the same name, what could be the problem:
My code is here:



print(data_EURUSD.head())
print(data_XAUUSD.head())
print(data_EURUSD.index)
print(data_XAUUSD.index)

data=pd.merge(data_EURUSD, data_XAUUSD, on='date', how='left')

print(data)


The result:



                 askclose

date
2017-05-19 21:00:00 1.12090
2017-05-21 21:00:00 1.11999
2017-05-22 21:00:00 1.12402
2017-05-23 21:00:00 1.11840
2017-05-24 21:00:00 1.12195

askclose
date
2017-01-20 22:00:00 1209.47
2017-01-23 22:00:00 1218.46
2017-01-24 22:00:00 1209.41
2017-01-25 22:00:00 1201.18
2017-01-26 22:00:00 1189.04

DatetimeIndex(['2017-05-19 21:00:00', '2017-05-21 21:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

DatetimeIndex(['2017-01-20 22:00:00', '2017-01-23 22:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

....

KeyError: 'date'









share|improve this question














I tried to us the pandas merge function but I got an keyerror message. The keys have the same type and the same name, what could be the problem:
My code is here:



print(data_EURUSD.head())
print(data_XAUUSD.head())
print(data_EURUSD.index)
print(data_XAUUSD.index)

data=pd.merge(data_EURUSD, data_XAUUSD, on='date', how='left')

print(data)


The result:



                 askclose

date
2017-05-19 21:00:00 1.12090
2017-05-21 21:00:00 1.11999
2017-05-22 21:00:00 1.12402
2017-05-23 21:00:00 1.11840
2017-05-24 21:00:00 1.12195

askclose
date
2017-01-20 22:00:00 1209.47
2017-01-23 22:00:00 1218.46
2017-01-24 22:00:00 1209.41
2017-01-25 22:00:00 1201.18
2017-01-26 22:00:00 1189.04

DatetimeIndex(['2017-05-19 21:00:00', '2017-05-21 21:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

DatetimeIndex(['2017-01-20 22:00:00', '2017-01-23 22:00:00',

'2018-12-26 22:00:00', '2018-12-27 22:00:00'],
dtype='datetime64[ns]', name='date', length=500, freq=None)

....

KeyError: 'date'






pandas dataframe merge






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Dec 28 '18 at 16:27









Roland SzarkaRoland Szarka

211




211













  • Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

    – Lucas H
    Dec 28 '18 at 16:44



















  • Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

    – Lucas H
    Dec 28 '18 at 16:44

















Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

– Lucas H
Dec 28 '18 at 16:44





Happy to help, and welcome to Stack Overflow. If this answer or any other one solved your issue, please mark it as accepted.

– Lucas H
Dec 28 '18 at 16:44












1 Answer
1






active

oldest

votes


















1














This error is because you have a datetime index, 'date' is not a column it is a index value.



You should do:



pd.merge(data_EURUSD, data_XAUUSD, how='left',right_index=True,left_index=True)


In these situations I prefer to use pd.df.join() which already seeks to join based on shared indices. The code would be:



data = data_EURUSD.join(data_XAUUSD,how='left')





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53961482%2fprobelem-with-pandas-dataframe-merge%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    This error is because you have a datetime index, 'date' is not a column it is a index value.



    You should do:



    pd.merge(data_EURUSD, data_XAUUSD, how='left',right_index=True,left_index=True)


    In these situations I prefer to use pd.df.join() which already seeks to join based on shared indices. The code would be:



    data = data_EURUSD.join(data_XAUUSD,how='left')





    share|improve this answer




























      1














      This error is because you have a datetime index, 'date' is not a column it is a index value.



      You should do:



      pd.merge(data_EURUSD, data_XAUUSD, how='left',right_index=True,left_index=True)


      In these situations I prefer to use pd.df.join() which already seeks to join based on shared indices. The code would be:



      data = data_EURUSD.join(data_XAUUSD,how='left')





      share|improve this answer


























        1












        1








        1







        This error is because you have a datetime index, 'date' is not a column it is a index value.



        You should do:



        pd.merge(data_EURUSD, data_XAUUSD, how='left',right_index=True,left_index=True)


        In these situations I prefer to use pd.df.join() which already seeks to join based on shared indices. The code would be:



        data = data_EURUSD.join(data_XAUUSD,how='left')





        share|improve this answer













        This error is because you have a datetime index, 'date' is not a column it is a index value.



        You should do:



        pd.merge(data_EURUSD, data_XAUUSD, how='left',right_index=True,left_index=True)


        In these situations I prefer to use pd.df.join() which already seeks to join based on shared indices. The code would be:



        data = data_EURUSD.join(data_XAUUSD,how='left')






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Dec 28 '18 at 16:32









        Lucas HLucas H

        864




        864






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53961482%2fprobelem-with-pandas-dataframe-merge%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Monofisismo

            Angular Downloading a file using contenturl with Basic Authentication

            Olmecas