Keras model.fit() showing loss as nan












0















I am trying to train my model for Instrument Detection. The output is displaying as loss: nan from the first epoch. I tried to change the loss function, activation function, and add some regularisation like Dropout, but it didn't affect the result.



Here is the code:



from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
from keras.optimizers import Adam

import pickle
import os
import numpy as np
from sklearn.model_selection import train_test_split

def one_hot_encoding(target):
Instruments = ['vio', 'pia', 'tru', 'flu']
enc_tar = np.zeros([len(target), 4])

for i in range(len(target)):
enc_tar[i][Instruments.index(target[i])] = 1

return enc_tar

def create_model_cnn(inp_shape):
classifier = Sequential()

classifier.add(Conv2D(25, kernel_size = 3, activation = 'relu', input_shape = inp_shape))
classifier.add(Conv2D(10, kernel_size = 3, activation = 'relu'))
classifier.add(Flatten())
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def create_model_mlp(inp_shape):
classifier = Sequential()

classifier.add(Dense(22, activation = 'softsign', input_shape = (42,)))
classifier.add(Dropout(0.25))
classifier.add(Dense(10, activation = 'softsign'))
classifier.add(Dropout(0.25))
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.0001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def get_weights(classifier):
return classifier.get_weights()

def set_weights(classifier, weights):
classifier.set_weights(weights)
return classifier

def train_model(classifier, data, target, epoch = 40):
classifier.fit(data, target, epochs = epoch, validation_split=0.4, batch_size = 32, verbose = 1)
return classifier

def predict(classifier, data):
return classifier.predict(data)

if __name__ == '__main__':

#Get the data and the target
[data, target] = pickle.load(open('../input/music-features/feat_targ.pickle', 'rb'))

#if 'model.pickle' not in os.listdir():
#Generate the classifiers
cnn_classifier = create_model_cnn((6, 7, 1))
mlp_classifier = create_model_mlp((42))
# else:
# #Load the existing model (from a pickle dump)
# classifier = pickle.load(open('model.pickle', 'rb'))

tr_data, tst_data, tr_target, tst_target = train_test_split(data, target)

tr_data_lin = np.array(tr_data)
tr_data = tr_data_lin.reshape((tr_data_lin.shape[0], 6, 7, 1))

tst_data_lin = np.array(tst_data)
tst_data = tst_data_lin.reshape((tst_data_lin.shape[0], 6, 7, 1))

enc_target = one_hot_encoding(tr_target)

#print(tr_data, enc_target)
# train_model(cnn_classifier, tr_data, enc_target)
train_model(mlp_classifier, tr_data_lin, enc_target)

# pickle.dump([cnn_classifier, mlp_classifier], open('model.pickle', 'wb'))


The training data and the test data are from the pickle file where the shape is (15000, 42).










share|improve this question























  • Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

    – constt
    Jan 1 at 12:45











  • All the labels are present in the Instruments list. The training data and the target are correct

    – Rithesh K
    Jan 1 at 19:54











  • Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

    – constt
    Jan 2 at 9:11











  • I tried using tanh and relu before using softsign. But the same problem kept arising

    – Rithesh K
    Jan 2 at 11:37











  • What does your data look like? Did you scale the data before feeding the model?

    – constt
    Jan 3 at 5:40
















0















I am trying to train my model for Instrument Detection. The output is displaying as loss: nan from the first epoch. I tried to change the loss function, activation function, and add some regularisation like Dropout, but it didn't affect the result.



Here is the code:



from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
from keras.optimizers import Adam

import pickle
import os
import numpy as np
from sklearn.model_selection import train_test_split

def one_hot_encoding(target):
Instruments = ['vio', 'pia', 'tru', 'flu']
enc_tar = np.zeros([len(target), 4])

for i in range(len(target)):
enc_tar[i][Instruments.index(target[i])] = 1

return enc_tar

def create_model_cnn(inp_shape):
classifier = Sequential()

classifier.add(Conv2D(25, kernel_size = 3, activation = 'relu', input_shape = inp_shape))
classifier.add(Conv2D(10, kernel_size = 3, activation = 'relu'))
classifier.add(Flatten())
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def create_model_mlp(inp_shape):
classifier = Sequential()

classifier.add(Dense(22, activation = 'softsign', input_shape = (42,)))
classifier.add(Dropout(0.25))
classifier.add(Dense(10, activation = 'softsign'))
classifier.add(Dropout(0.25))
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.0001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def get_weights(classifier):
return classifier.get_weights()

def set_weights(classifier, weights):
classifier.set_weights(weights)
return classifier

def train_model(classifier, data, target, epoch = 40):
classifier.fit(data, target, epochs = epoch, validation_split=0.4, batch_size = 32, verbose = 1)
return classifier

def predict(classifier, data):
return classifier.predict(data)

if __name__ == '__main__':

#Get the data and the target
[data, target] = pickle.load(open('../input/music-features/feat_targ.pickle', 'rb'))

#if 'model.pickle' not in os.listdir():
#Generate the classifiers
cnn_classifier = create_model_cnn((6, 7, 1))
mlp_classifier = create_model_mlp((42))
# else:
# #Load the existing model (from a pickle dump)
# classifier = pickle.load(open('model.pickle', 'rb'))

tr_data, tst_data, tr_target, tst_target = train_test_split(data, target)

tr_data_lin = np.array(tr_data)
tr_data = tr_data_lin.reshape((tr_data_lin.shape[0], 6, 7, 1))

tst_data_lin = np.array(tst_data)
tst_data = tst_data_lin.reshape((tst_data_lin.shape[0], 6, 7, 1))

enc_target = one_hot_encoding(tr_target)

#print(tr_data, enc_target)
# train_model(cnn_classifier, tr_data, enc_target)
train_model(mlp_classifier, tr_data_lin, enc_target)

# pickle.dump([cnn_classifier, mlp_classifier], open('model.pickle', 'wb'))


The training data and the test data are from the pickle file where the shape is (15000, 42).










share|improve this question























  • Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

    – constt
    Jan 1 at 12:45











  • All the labels are present in the Instruments list. The training data and the target are correct

    – Rithesh K
    Jan 1 at 19:54











  • Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

    – constt
    Jan 2 at 9:11











  • I tried using tanh and relu before using softsign. But the same problem kept arising

    – Rithesh K
    Jan 2 at 11:37











  • What does your data look like? Did you scale the data before feeding the model?

    – constt
    Jan 3 at 5:40














0












0








0








I am trying to train my model for Instrument Detection. The output is displaying as loss: nan from the first epoch. I tried to change the loss function, activation function, and add some regularisation like Dropout, but it didn't affect the result.



Here is the code:



from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
from keras.optimizers import Adam

import pickle
import os
import numpy as np
from sklearn.model_selection import train_test_split

def one_hot_encoding(target):
Instruments = ['vio', 'pia', 'tru', 'flu']
enc_tar = np.zeros([len(target), 4])

for i in range(len(target)):
enc_tar[i][Instruments.index(target[i])] = 1

return enc_tar

def create_model_cnn(inp_shape):
classifier = Sequential()

classifier.add(Conv2D(25, kernel_size = 3, activation = 'relu', input_shape = inp_shape))
classifier.add(Conv2D(10, kernel_size = 3, activation = 'relu'))
classifier.add(Flatten())
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def create_model_mlp(inp_shape):
classifier = Sequential()

classifier.add(Dense(22, activation = 'softsign', input_shape = (42,)))
classifier.add(Dropout(0.25))
classifier.add(Dense(10, activation = 'softsign'))
classifier.add(Dropout(0.25))
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.0001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def get_weights(classifier):
return classifier.get_weights()

def set_weights(classifier, weights):
classifier.set_weights(weights)
return classifier

def train_model(classifier, data, target, epoch = 40):
classifier.fit(data, target, epochs = epoch, validation_split=0.4, batch_size = 32, verbose = 1)
return classifier

def predict(classifier, data):
return classifier.predict(data)

if __name__ == '__main__':

#Get the data and the target
[data, target] = pickle.load(open('../input/music-features/feat_targ.pickle', 'rb'))

#if 'model.pickle' not in os.listdir():
#Generate the classifiers
cnn_classifier = create_model_cnn((6, 7, 1))
mlp_classifier = create_model_mlp((42))
# else:
# #Load the existing model (from a pickle dump)
# classifier = pickle.load(open('model.pickle', 'rb'))

tr_data, tst_data, tr_target, tst_target = train_test_split(data, target)

tr_data_lin = np.array(tr_data)
tr_data = tr_data_lin.reshape((tr_data_lin.shape[0], 6, 7, 1))

tst_data_lin = np.array(tst_data)
tst_data = tst_data_lin.reshape((tst_data_lin.shape[0], 6, 7, 1))

enc_target = one_hot_encoding(tr_target)

#print(tr_data, enc_target)
# train_model(cnn_classifier, tr_data, enc_target)
train_model(mlp_classifier, tr_data_lin, enc_target)

# pickle.dump([cnn_classifier, mlp_classifier], open('model.pickle', 'wb'))


The training data and the test data are from the pickle file where the shape is (15000, 42).










share|improve this question














I am trying to train my model for Instrument Detection. The output is displaying as loss: nan from the first epoch. I tried to change the loss function, activation function, and add some regularisation like Dropout, but it didn't affect the result.



Here is the code:



from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
from keras.optimizers import Adam

import pickle
import os
import numpy as np
from sklearn.model_selection import train_test_split

def one_hot_encoding(target):
Instruments = ['vio', 'pia', 'tru', 'flu']
enc_tar = np.zeros([len(target), 4])

for i in range(len(target)):
enc_tar[i][Instruments.index(target[i])] = 1

return enc_tar

def create_model_cnn(inp_shape):
classifier = Sequential()

classifier.add(Conv2D(25, kernel_size = 3, activation = 'relu', input_shape = inp_shape))
classifier.add(Conv2D(10, kernel_size = 3, activation = 'relu'))
classifier.add(Flatten())
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def create_model_mlp(inp_shape):
classifier = Sequential()

classifier.add(Dense(22, activation = 'softsign', input_shape = (42,)))
classifier.add(Dropout(0.25))
classifier.add(Dense(10, activation = 'softsign'))
classifier.add(Dropout(0.25))
classifier.add(Dense(4, activation = 'softmax'))

adam = Adam(0.0001)

classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])

return classifier

def get_weights(classifier):
return classifier.get_weights()

def set_weights(classifier, weights):
classifier.set_weights(weights)
return classifier

def train_model(classifier, data, target, epoch = 40):
classifier.fit(data, target, epochs = epoch, validation_split=0.4, batch_size = 32, verbose = 1)
return classifier

def predict(classifier, data):
return classifier.predict(data)

if __name__ == '__main__':

#Get the data and the target
[data, target] = pickle.load(open('../input/music-features/feat_targ.pickle', 'rb'))

#if 'model.pickle' not in os.listdir():
#Generate the classifiers
cnn_classifier = create_model_cnn((6, 7, 1))
mlp_classifier = create_model_mlp((42))
# else:
# #Load the existing model (from a pickle dump)
# classifier = pickle.load(open('model.pickle', 'rb'))

tr_data, tst_data, tr_target, tst_target = train_test_split(data, target)

tr_data_lin = np.array(tr_data)
tr_data = tr_data_lin.reshape((tr_data_lin.shape[0], 6, 7, 1))

tst_data_lin = np.array(tst_data)
tst_data = tst_data_lin.reshape((tst_data_lin.shape[0], 6, 7, 1))

enc_target = one_hot_encoding(tr_target)

#print(tr_data, enc_target)
# train_model(cnn_classifier, tr_data, enc_target)
train_model(mlp_classifier, tr_data_lin, enc_target)

# pickle.dump([cnn_classifier, mlp_classifier], open('model.pickle', 'wb'))


The training data and the test data are from the pickle file where the shape is (15000, 42).







python tensorflow keras






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Jan 1 at 12:37









Rithesh KRithesh K

1




1













  • Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

    – constt
    Jan 1 at 12:45











  • All the labels are present in the Instruments list. The training data and the target are correct

    – Rithesh K
    Jan 1 at 19:54











  • Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

    – constt
    Jan 2 at 9:11











  • I tried using tanh and relu before using softsign. But the same problem kept arising

    – Rithesh K
    Jan 2 at 11:37











  • What does your data look like? Did you scale the data before feeding the model?

    – constt
    Jan 3 at 5:40



















  • Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

    – constt
    Jan 1 at 12:45











  • All the labels are present in the Instruments list. The training data and the target are correct

    – Rithesh K
    Jan 1 at 19:54











  • Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

    – constt
    Jan 2 at 9:11











  • I tried using tanh and relu before using softsign. But the same problem kept arising

    – Rithesh K
    Jan 2 at 11:37











  • What does your data look like? Did you scale the data before feeding the model?

    – constt
    Jan 3 at 5:40

















Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

– constt
Jan 1 at 12:45





Double check your training data. Maybe some of the labels are not in the Instruments list. As a result, some of the target one-hot-encoded vectors are all zeros.

– constt
Jan 1 at 12:45













All the labels are present in the Instruments list. The training data and the target are correct

– Rithesh K
Jan 1 at 19:54





All the labels are present in the Instruments list. The training data and the target are correct

– Rithesh K
Jan 1 at 19:54













Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

– constt
Jan 2 at 9:11





Sure, sorry I didn't notice you'll get an exception during the one-hot encoding if a label is not in the Instruments list. Right. Then, I'm pretty sure it's an activation function, softsign in your case. Try to use something different, say tanh or relu.

– constt
Jan 2 at 9:11













I tried using tanh and relu before using softsign. But the same problem kept arising

– Rithesh K
Jan 2 at 11:37





I tried using tanh and relu before using softsign. But the same problem kept arising

– Rithesh K
Jan 2 at 11:37













What does your data look like? Did you scale the data before feeding the model?

– constt
Jan 3 at 5:40





What does your data look like? Did you scale the data before feeding the model?

– constt
Jan 3 at 5:40












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53995487%2fkeras-model-fit-showing-loss-as-nan%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53995487%2fkeras-model-fit-showing-loss-as-nan%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Monofisismo

Angular Downloading a file using contenturl with Basic Authentication

Olmecas