how to write summary in distributied tensorflow?












0















I have tried servral methods to write summary in distributied tensorflow setting, but all of them failed. my last try failed with



InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float



Following is my code:



if arguments.job_name == "ps":
server.join()
elif arguments.job_name == "worker":
is_chief = (arguments.task_index == 0)
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % arguments.task_index,
cluster=cluster)):
x = tf.placeholder(tf.float32, shape=(None, feature_num), name="input_x")
y = tf.placeholder(tf.float32, shape=(None, 1), name="input_y")
w = tf.get_variable("weight", (feature_num, 1), initializer=tf.random_normal_initializer())
b = tf.get_variable("bais", (1, 1), initializer=tf.constant_initializer(0.0))
p_y = tf.add(tf.matmul(x, w), b)
loss = tf.reduce_sum(tf.square(y - p_y), name="loss")
global_step = tf.contrib.framework.get_or_create_global_step()
opt = tf.train.GradientDescentOptimizer(learning_rate=0.0000001)
training_op = opt.minimize(loss, global_step=global_step)
tf.summary.scalar("loss",loss)
summary_op = tf.summary.merge_all()
summary_hook = tf.train.SummarySaverHook(save_secs=1, output_dir="./summary", summary_op=summary_op)

with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=is_chief,
hooks=[summary_hook],save_summaries_secs=None,save_summaries_steps=None,
checkpoint_dir="./model",save_checkpoint_secs=5) as mon_sess:

for (x_data, y_data) in dataSet:
if not mon_sess.should_stop():
print("============training...=====================")
mon_sess.run(training_op, feed_dict={x: x_data, y: y_data})
mon_sess.run(summary_op, feed_dict={x: x_data, y: y_data})
print("finised!!!!")


can anybody give help?










share|improve this question





























    0















    I have tried servral methods to write summary in distributied tensorflow setting, but all of them failed. my last try failed with



    InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float



    Following is my code:



    if arguments.job_name == "ps":
    server.join()
    elif arguments.job_name == "worker":
    is_chief = (arguments.task_index == 0)
    with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % arguments.task_index,
    cluster=cluster)):
    x = tf.placeholder(tf.float32, shape=(None, feature_num), name="input_x")
    y = tf.placeholder(tf.float32, shape=(None, 1), name="input_y")
    w = tf.get_variable("weight", (feature_num, 1), initializer=tf.random_normal_initializer())
    b = tf.get_variable("bais", (1, 1), initializer=tf.constant_initializer(0.0))
    p_y = tf.add(tf.matmul(x, w), b)
    loss = tf.reduce_sum(tf.square(y - p_y), name="loss")
    global_step = tf.contrib.framework.get_or_create_global_step()
    opt = tf.train.GradientDescentOptimizer(learning_rate=0.0000001)
    training_op = opt.minimize(loss, global_step=global_step)
    tf.summary.scalar("loss",loss)
    summary_op = tf.summary.merge_all()
    summary_hook = tf.train.SummarySaverHook(save_secs=1, output_dir="./summary", summary_op=summary_op)

    with tf.train.MonitoredTrainingSession(master=server.target,
    is_chief=is_chief,
    hooks=[summary_hook],save_summaries_secs=None,save_summaries_steps=None,
    checkpoint_dir="./model",save_checkpoint_secs=5) as mon_sess:

    for (x_data, y_data) in dataSet:
    if not mon_sess.should_stop():
    print("============training...=====================")
    mon_sess.run(training_op, feed_dict={x: x_data, y: y_data})
    mon_sess.run(summary_op, feed_dict={x: x_data, y: y_data})
    print("finised!!!!")


    can anybody give help?










    share|improve this question



























      0












      0








      0








      I have tried servral methods to write summary in distributied tensorflow setting, but all of them failed. my last try failed with



      InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float



      Following is my code:



      if arguments.job_name == "ps":
      server.join()
      elif arguments.job_name == "worker":
      is_chief = (arguments.task_index == 0)
      with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % arguments.task_index,
      cluster=cluster)):
      x = tf.placeholder(tf.float32, shape=(None, feature_num), name="input_x")
      y = tf.placeholder(tf.float32, shape=(None, 1), name="input_y")
      w = tf.get_variable("weight", (feature_num, 1), initializer=tf.random_normal_initializer())
      b = tf.get_variable("bais", (1, 1), initializer=tf.constant_initializer(0.0))
      p_y = tf.add(tf.matmul(x, w), b)
      loss = tf.reduce_sum(tf.square(y - p_y), name="loss")
      global_step = tf.contrib.framework.get_or_create_global_step()
      opt = tf.train.GradientDescentOptimizer(learning_rate=0.0000001)
      training_op = opt.minimize(loss, global_step=global_step)
      tf.summary.scalar("loss",loss)
      summary_op = tf.summary.merge_all()
      summary_hook = tf.train.SummarySaverHook(save_secs=1, output_dir="./summary", summary_op=summary_op)

      with tf.train.MonitoredTrainingSession(master=server.target,
      is_chief=is_chief,
      hooks=[summary_hook],save_summaries_secs=None,save_summaries_steps=None,
      checkpoint_dir="./model",save_checkpoint_secs=5) as mon_sess:

      for (x_data, y_data) in dataSet:
      if not mon_sess.should_stop():
      print("============training...=====================")
      mon_sess.run(training_op, feed_dict={x: x_data, y: y_data})
      mon_sess.run(summary_op, feed_dict={x: x_data, y: y_data})
      print("finised!!!!")


      can anybody give help?










      share|improve this question
















      I have tried servral methods to write summary in distributied tensorflow setting, but all of them failed. my last try failed with



      InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float



      Following is my code:



      if arguments.job_name == "ps":
      server.join()
      elif arguments.job_name == "worker":
      is_chief = (arguments.task_index == 0)
      with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % arguments.task_index,
      cluster=cluster)):
      x = tf.placeholder(tf.float32, shape=(None, feature_num), name="input_x")
      y = tf.placeholder(tf.float32, shape=(None, 1), name="input_y")
      w = tf.get_variable("weight", (feature_num, 1), initializer=tf.random_normal_initializer())
      b = tf.get_variable("bais", (1, 1), initializer=tf.constant_initializer(0.0))
      p_y = tf.add(tf.matmul(x, w), b)
      loss = tf.reduce_sum(tf.square(y - p_y), name="loss")
      global_step = tf.contrib.framework.get_or_create_global_step()
      opt = tf.train.GradientDescentOptimizer(learning_rate=0.0000001)
      training_op = opt.minimize(loss, global_step=global_step)
      tf.summary.scalar("loss",loss)
      summary_op = tf.summary.merge_all()
      summary_hook = tf.train.SummarySaverHook(save_secs=1, output_dir="./summary", summary_op=summary_op)

      with tf.train.MonitoredTrainingSession(master=server.target,
      is_chief=is_chief,
      hooks=[summary_hook],save_summaries_secs=None,save_summaries_steps=None,
      checkpoint_dir="./model",save_checkpoint_secs=5) as mon_sess:

      for (x_data, y_data) in dataSet:
      if not mon_sess.should_stop():
      print("============training...=====================")
      mon_sess.run(training_op, feed_dict={x: x_data, y: y_data})
      mon_sess.run(summary_op, feed_dict={x: x_data, y: y_data})
      print("finised!!!!")


      can anybody give help?







      tensorflow distributed






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 2 at 1:13







      jianjunwu

















      asked Jan 1 at 12:29









      jianjunwujianjunwu

      12




      12
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53995435%2fhow-to-write-summary-in-distributied-tensorflow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53995435%2fhow-to-write-summary-in-distributied-tensorflow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Monofisismo

          Angular Downloading a file using contenturl with Basic Authentication

          Olmecas