why i am Getting Error in the placeholder Dimension in tensor flow?












0















I am trying to create a neural network.
Here is my neural network design



    num_channels=3
filter_size_conv1=3
filter_size_conv2=3
filter_size_conv3=3
num_filters_conv1=32
num_filters_conv2=64
num_filters_conv3=128
num_classes=1
img_size=196.0
fc_layer_size=80000
num_channelss=3.0
#__________________Creating the MODEL______________________

x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channelss], name="x_placeholder")

y = tf.placeholder(tf.float32, shape=[None, num_classes], name="y_true")
y_true_cls = tf.argmax(y, axis=1)



#neural network Design
layer_conv1 = create_convolutional_layer(input=x,num_input_channels=num_channels,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv1")

layer_conv1_1 = create_convolutional_layer(input=layer_conv1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv2")

layer_conv1_1_1 = create_convolutional_layer(input=layer_conv1_1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv3")

max_pool_1=maxpool2d(layer_conv1_1_1,2,name="maxpool_1")

drop_out_1=dropout(max_pool_1,name="dropout_1")

flatten_layer=create_flatten_layer(drop_out_3)

layer_fc2 = create_fc_layer(input=flatten_layer,num_inputs=fc_layer_size,num_outputs=num_classes,use_relu=True)


y_pred = tf.nn.softmax(layer_fc2,name="y_pred")

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=y_pred))

#Defining objective
train = tf.train.AdamOptimizer(learning_rate=0.00001).minimize(cost)


print ("_____Neural Network Architecture Created Succefully_____")
epochs=10
matches = tf.equal(tf.argmax(y_pred,axis=1),tf.argmax(y,axis=1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))


#Initializing weights
init = tf.global_variables_initializer()

with tf.Session() as sess:
#writing output to the logs for tensorboard
writer=tf.summary.FileWriter("./logs",sess.graph)
sess.run(init)

for i in range(epochs):
#creating smaller batches

for j in range(0,steps-remaining,step_size):
sess.run([acc,train,cost],feed_dict={x:X_train[j:j+step_size],y:y_train[j:j+step_size]})



Now my input first from X_train to the model is of the dimension (7,196,196,3).




X_train contains 22 images.



Here is the Error Trace:



InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_placeholder' with dtype float and shape [?,196,196,3]
[[Node: x_placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,196,196,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: Mean/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_147_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


I am not able to find the bug, I am feeding in the right dimensions,still error.










share|improve this question



























    0















    I am trying to create a neural network.
    Here is my neural network design



        num_channels=3
    filter_size_conv1=3
    filter_size_conv2=3
    filter_size_conv3=3
    num_filters_conv1=32
    num_filters_conv2=64
    num_filters_conv3=128
    num_classes=1
    img_size=196.0
    fc_layer_size=80000
    num_channelss=3.0
    #__________________Creating the MODEL______________________

    x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channelss], name="x_placeholder")

    y = tf.placeholder(tf.float32, shape=[None, num_classes], name="y_true")
    y_true_cls = tf.argmax(y, axis=1)



    #neural network Design
    layer_conv1 = create_convolutional_layer(input=x,num_input_channels=num_channels,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv1")

    layer_conv1_1 = create_convolutional_layer(input=layer_conv1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv2")

    layer_conv1_1_1 = create_convolutional_layer(input=layer_conv1_1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv3")

    max_pool_1=maxpool2d(layer_conv1_1_1,2,name="maxpool_1")

    drop_out_1=dropout(max_pool_1,name="dropout_1")

    flatten_layer=create_flatten_layer(drop_out_3)

    layer_fc2 = create_fc_layer(input=flatten_layer,num_inputs=fc_layer_size,num_outputs=num_classes,use_relu=True)


    y_pred = tf.nn.softmax(layer_fc2,name="y_pred")

    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=y_pred))

    #Defining objective
    train = tf.train.AdamOptimizer(learning_rate=0.00001).minimize(cost)


    print ("_____Neural Network Architecture Created Succefully_____")
    epochs=10
    matches = tf.equal(tf.argmax(y_pred,axis=1),tf.argmax(y,axis=1))
    acc = tf.reduce_mean(tf.cast(matches,tf.float32))


    #Initializing weights
    init = tf.global_variables_initializer()

    with tf.Session() as sess:
    #writing output to the logs for tensorboard
    writer=tf.summary.FileWriter("./logs",sess.graph)
    sess.run(init)

    for i in range(epochs):
    #creating smaller batches

    for j in range(0,steps-remaining,step_size):
    sess.run([acc,train,cost],feed_dict={x:X_train[j:j+step_size],y:y_train[j:j+step_size]})



    Now my input first from X_train to the model is of the dimension (7,196,196,3).




    X_train contains 22 images.



    Here is the Error Trace:



    InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_placeholder' with dtype float and shape [?,196,196,3]
    [[Node: x_placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,196,196,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
    [[Node: Mean/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_147_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


    I am not able to find the bug, I am feeding in the right dimensions,still error.










    share|improve this question

























      0












      0








      0








      I am trying to create a neural network.
      Here is my neural network design



          num_channels=3
      filter_size_conv1=3
      filter_size_conv2=3
      filter_size_conv3=3
      num_filters_conv1=32
      num_filters_conv2=64
      num_filters_conv3=128
      num_classes=1
      img_size=196.0
      fc_layer_size=80000
      num_channelss=3.0
      #__________________Creating the MODEL______________________

      x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channelss], name="x_placeholder")

      y = tf.placeholder(tf.float32, shape=[None, num_classes], name="y_true")
      y_true_cls = tf.argmax(y, axis=1)



      #neural network Design
      layer_conv1 = create_convolutional_layer(input=x,num_input_channels=num_channels,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv1")

      layer_conv1_1 = create_convolutional_layer(input=layer_conv1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv2")

      layer_conv1_1_1 = create_convolutional_layer(input=layer_conv1_1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv3")

      max_pool_1=maxpool2d(layer_conv1_1_1,2,name="maxpool_1")

      drop_out_1=dropout(max_pool_1,name="dropout_1")

      flatten_layer=create_flatten_layer(drop_out_3)

      layer_fc2 = create_fc_layer(input=flatten_layer,num_inputs=fc_layer_size,num_outputs=num_classes,use_relu=True)


      y_pred = tf.nn.softmax(layer_fc2,name="y_pred")

      cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=y_pred))

      #Defining objective
      train = tf.train.AdamOptimizer(learning_rate=0.00001).minimize(cost)


      print ("_____Neural Network Architecture Created Succefully_____")
      epochs=10
      matches = tf.equal(tf.argmax(y_pred,axis=1),tf.argmax(y,axis=1))
      acc = tf.reduce_mean(tf.cast(matches,tf.float32))


      #Initializing weights
      init = tf.global_variables_initializer()

      with tf.Session() as sess:
      #writing output to the logs for tensorboard
      writer=tf.summary.FileWriter("./logs",sess.graph)
      sess.run(init)

      for i in range(epochs):
      #creating smaller batches

      for j in range(0,steps-remaining,step_size):
      sess.run([acc,train,cost],feed_dict={x:X_train[j:j+step_size],y:y_train[j:j+step_size]})



      Now my input first from X_train to the model is of the dimension (7,196,196,3).




      X_train contains 22 images.



      Here is the Error Trace:



      InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_placeholder' with dtype float and shape [?,196,196,3]
      [[Node: x_placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,196,196,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
      [[Node: Mean/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_147_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


      I am not able to find the bug, I am feeding in the right dimensions,still error.










      share|improve this question














      I am trying to create a neural network.
      Here is my neural network design



          num_channels=3
      filter_size_conv1=3
      filter_size_conv2=3
      filter_size_conv3=3
      num_filters_conv1=32
      num_filters_conv2=64
      num_filters_conv3=128
      num_classes=1
      img_size=196.0
      fc_layer_size=80000
      num_channelss=3.0
      #__________________Creating the MODEL______________________

      x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channelss], name="x_placeholder")

      y = tf.placeholder(tf.float32, shape=[None, num_classes], name="y_true")
      y_true_cls = tf.argmax(y, axis=1)



      #neural network Design
      layer_conv1 = create_convolutional_layer(input=x,num_input_channels=num_channels,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv1")

      layer_conv1_1 = create_convolutional_layer(input=layer_conv1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv2")

      layer_conv1_1_1 = create_convolutional_layer(input=layer_conv1_1,num_input_channels=num_filters_conv1,conv_filter_size=filter_size_conv1,num_filters=num_filters_conv1,name="conv3")

      max_pool_1=maxpool2d(layer_conv1_1_1,2,name="maxpool_1")

      drop_out_1=dropout(max_pool_1,name="dropout_1")

      flatten_layer=create_flatten_layer(drop_out_3)

      layer_fc2 = create_fc_layer(input=flatten_layer,num_inputs=fc_layer_size,num_outputs=num_classes,use_relu=True)


      y_pred = tf.nn.softmax(layer_fc2,name="y_pred")

      cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=y_pred))

      #Defining objective
      train = tf.train.AdamOptimizer(learning_rate=0.00001).minimize(cost)


      print ("_____Neural Network Architecture Created Succefully_____")
      epochs=10
      matches = tf.equal(tf.argmax(y_pred,axis=1),tf.argmax(y,axis=1))
      acc = tf.reduce_mean(tf.cast(matches,tf.float32))


      #Initializing weights
      init = tf.global_variables_initializer()

      with tf.Session() as sess:
      #writing output to the logs for tensorboard
      writer=tf.summary.FileWriter("./logs",sess.graph)
      sess.run(init)

      for i in range(epochs):
      #creating smaller batches

      for j in range(0,steps-remaining,step_size):
      sess.run([acc,train,cost],feed_dict={x:X_train[j:j+step_size],y:y_train[j:j+step_size]})



      Now my input first from X_train to the model is of the dimension (7,196,196,3).




      X_train contains 22 images.



      Here is the Error Trace:



      InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_placeholder' with dtype float and shape [?,196,196,3]
      [[Node: x_placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,196,196,3], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
      [[Node: Mean/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_147_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]


      I am not able to find the bug, I am feeding in the right dimensions,still error.







      python-3.x tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 28 '18 at 12:49









      user10573543user10573543

      227




      227
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53958878%2fwhy-i-am-getting-error-in-the-placeholder-dimension-in-tensor-flow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53958878%2fwhy-i-am-getting-error-in-the-placeholder-dimension-in-tensor-flow%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Monofisismo

          Angular Downloading a file using contenturl with Basic Authentication

          Olmecas