Converting dataset to Reward/Miss dataset in Python
I want to convert the following dataset (CSV) using Pandas and NumPy in Python:
Table 1 (csv)
Ads, Impressions, Clicks
Ad_1, 11, 1
Ad_2, 10, 2
to
Table 2 (csv)
Ad_1, Ad_2
0, 0
0, 0
0, 0
0, 1
0, 0
1, 0
0, 0
0, 0
0, 1
0, 0
0
Table 2 has basically impressions as total number of rows with random insertion of 1's (count = Clicks).
The converted table is to run CTR optimization on 2 Ad sets using Upper Confidence Bound algorithm using machine learning. Kindly help how to convert Table 1 to Table 2.
Thanks!
python pandas numpy
add a comment |
I want to convert the following dataset (CSV) using Pandas and NumPy in Python:
Table 1 (csv)
Ads, Impressions, Clicks
Ad_1, 11, 1
Ad_2, 10, 2
to
Table 2 (csv)
Ad_1, Ad_2
0, 0
0, 0
0, 0
0, 1
0, 0
1, 0
0, 0
0, 0
0, 1
0, 0
0
Table 2 has basically impressions as total number of rows with random insertion of 1's (count = Clicks).
The converted table is to run CTR optimization on 2 Ad sets using Upper Confidence Bound algorithm using machine learning. Kindly help how to convert Table 1 to Table 2.
Thanks!
python pandas numpy
Question has nothing to do withmachine-learning
- kindly do not spam the tag (removed).
– desertnaut
Dec 28 '18 at 16:59
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23
add a comment |
I want to convert the following dataset (CSV) using Pandas and NumPy in Python:
Table 1 (csv)
Ads, Impressions, Clicks
Ad_1, 11, 1
Ad_2, 10, 2
to
Table 2 (csv)
Ad_1, Ad_2
0, 0
0, 0
0, 0
0, 1
0, 0
1, 0
0, 0
0, 0
0, 1
0, 0
0
Table 2 has basically impressions as total number of rows with random insertion of 1's (count = Clicks).
The converted table is to run CTR optimization on 2 Ad sets using Upper Confidence Bound algorithm using machine learning. Kindly help how to convert Table 1 to Table 2.
Thanks!
python pandas numpy
I want to convert the following dataset (CSV) using Pandas and NumPy in Python:
Table 1 (csv)
Ads, Impressions, Clicks
Ad_1, 11, 1
Ad_2, 10, 2
to
Table 2 (csv)
Ad_1, Ad_2
0, 0
0, 0
0, 0
0, 1
0, 0
1, 0
0, 0
0, 0
0, 1
0, 0
0
Table 2 has basically impressions as total number of rows with random insertion of 1's (count = Clicks).
The converted table is to run CTR optimization on 2 Ad sets using Upper Confidence Bound algorithm using machine learning. Kindly help how to convert Table 1 to Table 2.
Thanks!
python pandas numpy
python pandas numpy
edited Dec 28 '18 at 16:59
desertnaut
16.8k63566
16.8k63566
asked Dec 28 '18 at 13:03
Vaibhav MagonVaibhav Magon
1,0501926
1,0501926
Question has nothing to do withmachine-learning
- kindly do not spam the tag (removed).
– desertnaut
Dec 28 '18 at 16:59
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23
add a comment |
Question has nothing to do withmachine-learning
- kindly do not spam the tag (removed).
– desertnaut
Dec 28 '18 at 16:59
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23
Question has nothing to do with
machine-learning
- kindly do not spam the tag (removed).– desertnaut
Dec 28 '18 at 16:59
Question has nothing to do with
machine-learning
- kindly do not spam the tag (removed).– desertnaut
Dec 28 '18 at 16:59
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23
add a comment |
1 Answer
1
active
oldest
votes
I think this should do the trick:
import pandas as pd
import numpy as np
from io import StringIO
TESTDATA = StringIO("""Ads,Impressions,Clicks
Ad_1, 11, 1
Ad_2, 10, 2
""")
table_1 = pd.read_csv(TESTDATA, sep=",")
def convert(row):
clicks_to_generate = row['Clicks']
array_len = row['Impressions']
ad = np.zeros(array_len)
ad[:clicks_to_generate] = 1
np.random.shuffle(ad) # you want it random
return ad
ads = table_1.apply(convert, axis=1)
series_list = [pd.Series(ad) for ad in ads]
table_2 = pd.DataFrame(series_list).T
table_2 = table_2.add_prefix('Ad_')
print(table_2)
Ad_0 Ad_1
0 0.0 0.0
1 1.0 0.0
2 0.0 1.0
3 0.0 1.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0
8 0.0 0.0
9 0.0 0.0
10 0.0 NaN
table_2.to_csv('table_2.csv', index=False)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53959037%2fconverting-dataset-to-reward-miss-dataset-in-python%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I think this should do the trick:
import pandas as pd
import numpy as np
from io import StringIO
TESTDATA = StringIO("""Ads,Impressions,Clicks
Ad_1, 11, 1
Ad_2, 10, 2
""")
table_1 = pd.read_csv(TESTDATA, sep=",")
def convert(row):
clicks_to_generate = row['Clicks']
array_len = row['Impressions']
ad = np.zeros(array_len)
ad[:clicks_to_generate] = 1
np.random.shuffle(ad) # you want it random
return ad
ads = table_1.apply(convert, axis=1)
series_list = [pd.Series(ad) for ad in ads]
table_2 = pd.DataFrame(series_list).T
table_2 = table_2.add_prefix('Ad_')
print(table_2)
Ad_0 Ad_1
0 0.0 0.0
1 1.0 0.0
2 0.0 1.0
3 0.0 1.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0
8 0.0 0.0
9 0.0 0.0
10 0.0 NaN
table_2.to_csv('table_2.csv', index=False)
add a comment |
I think this should do the trick:
import pandas as pd
import numpy as np
from io import StringIO
TESTDATA = StringIO("""Ads,Impressions,Clicks
Ad_1, 11, 1
Ad_2, 10, 2
""")
table_1 = pd.read_csv(TESTDATA, sep=",")
def convert(row):
clicks_to_generate = row['Clicks']
array_len = row['Impressions']
ad = np.zeros(array_len)
ad[:clicks_to_generate] = 1
np.random.shuffle(ad) # you want it random
return ad
ads = table_1.apply(convert, axis=1)
series_list = [pd.Series(ad) for ad in ads]
table_2 = pd.DataFrame(series_list).T
table_2 = table_2.add_prefix('Ad_')
print(table_2)
Ad_0 Ad_1
0 0.0 0.0
1 1.0 0.0
2 0.0 1.0
3 0.0 1.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0
8 0.0 0.0
9 0.0 0.0
10 0.0 NaN
table_2.to_csv('table_2.csv', index=False)
add a comment |
I think this should do the trick:
import pandas as pd
import numpy as np
from io import StringIO
TESTDATA = StringIO("""Ads,Impressions,Clicks
Ad_1, 11, 1
Ad_2, 10, 2
""")
table_1 = pd.read_csv(TESTDATA, sep=",")
def convert(row):
clicks_to_generate = row['Clicks']
array_len = row['Impressions']
ad = np.zeros(array_len)
ad[:clicks_to_generate] = 1
np.random.shuffle(ad) # you want it random
return ad
ads = table_1.apply(convert, axis=1)
series_list = [pd.Series(ad) for ad in ads]
table_2 = pd.DataFrame(series_list).T
table_2 = table_2.add_prefix('Ad_')
print(table_2)
Ad_0 Ad_1
0 0.0 0.0
1 1.0 0.0
2 0.0 1.0
3 0.0 1.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0
8 0.0 0.0
9 0.0 0.0
10 0.0 NaN
table_2.to_csv('table_2.csv', index=False)
I think this should do the trick:
import pandas as pd
import numpy as np
from io import StringIO
TESTDATA = StringIO("""Ads,Impressions,Clicks
Ad_1, 11, 1
Ad_2, 10, 2
""")
table_1 = pd.read_csv(TESTDATA, sep=",")
def convert(row):
clicks_to_generate = row['Clicks']
array_len = row['Impressions']
ad = np.zeros(array_len)
ad[:clicks_to_generate] = 1
np.random.shuffle(ad) # you want it random
return ad
ads = table_1.apply(convert, axis=1)
series_list = [pd.Series(ad) for ad in ads]
table_2 = pd.DataFrame(series_list).T
table_2 = table_2.add_prefix('Ad_')
print(table_2)
Ad_0 Ad_1
0 0.0 0.0
1 1.0 0.0
2 0.0 1.0
3 0.0 1.0
4 0.0 0.0
5 0.0 0.0
6 0.0 0.0
7 0.0 0.0
8 0.0 0.0
9 0.0 0.0
10 0.0 NaN
table_2.to_csv('table_2.csv', index=False)
edited Dec 28 '18 at 15:35
answered Dec 28 '18 at 15:29
Lukasz TracewskiLukasz Tracewski
2,1211020
2,1211020
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53959037%2fconverting-dataset-to-reward-miss-dataset-in-python%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Question has nothing to do with
machine-learning
- kindly do not spam the tag (removed).– desertnaut
Dec 28 '18 at 16:59
It was just to call in more help!
– Vaibhav Magon
Dec 29 '18 at 10:27
That's not a legitimate use of tags (let alone that the python/pandas/numpy community is already big enough) - kindly refrain from the practice next time
– desertnaut
Dec 29 '18 at 12:23