Infinite summation $sum_limits{n=0}^infty frac{sin(ntheta)}{2^n}$












6












$begingroup$


So one of my past exam papers has the question:




Show:
$$sum_limits{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$$




My working:



$e^{intheta} = cos(ntheta) + isin(ntheta)$



So $sin(ntheta)$ is the imaginary part of $e^{intheta}$



Thus we get: $$Imleft(sum_{n=0}^infty left(frac{e^{itheta}}{2}right)^nright)$$



Using the summation formula for infinite geometric series gives:



$$frac{1}{1-frac{e^{itheta}}{2}}$$



And after multiplying by the complex conjugate I get the imaginary part to be



$$frac{2sin(theta)}{5-4cos(theta)}$$



Any help would be great, thanks!










share|cite|improve this question











$endgroup$

















    6












    $begingroup$


    So one of my past exam papers has the question:




    Show:
    $$sum_limits{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$$




    My working:



    $e^{intheta} = cos(ntheta) + isin(ntheta)$



    So $sin(ntheta)$ is the imaginary part of $e^{intheta}$



    Thus we get: $$Imleft(sum_{n=0}^infty left(frac{e^{itheta}}{2}right)^nright)$$



    Using the summation formula for infinite geometric series gives:



    $$frac{1}{1-frac{e^{itheta}}{2}}$$



    And after multiplying by the complex conjugate I get the imaginary part to be



    $$frac{2sin(theta)}{5-4cos(theta)}$$



    Any help would be great, thanks!










    share|cite|improve this question











    $endgroup$















      6












      6








      6





      $begingroup$


      So one of my past exam papers has the question:




      Show:
      $$sum_limits{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$$




      My working:



      $e^{intheta} = cos(ntheta) + isin(ntheta)$



      So $sin(ntheta)$ is the imaginary part of $e^{intheta}$



      Thus we get: $$Imleft(sum_{n=0}^infty left(frac{e^{itheta}}{2}right)^nright)$$



      Using the summation formula for infinite geometric series gives:



      $$frac{1}{1-frac{e^{itheta}}{2}}$$



      And after multiplying by the complex conjugate I get the imaginary part to be



      $$frac{2sin(theta)}{5-4cos(theta)}$$



      Any help would be great, thanks!










      share|cite|improve this question











      $endgroup$




      So one of my past exam papers has the question:




      Show:
      $$sum_limits{n=0}^infty frac{sin(ntheta)}{2^n} = frac{sin(theta)}{5-4cos(theta)}$$




      My working:



      $e^{intheta} = cos(ntheta) + isin(ntheta)$



      So $sin(ntheta)$ is the imaginary part of $e^{intheta}$



      Thus we get: $$Imleft(sum_{n=0}^infty left(frac{e^{itheta}}{2}right)^nright)$$



      Using the summation formula for infinite geometric series gives:



      $$frac{1}{1-frac{e^{itheta}}{2}}$$



      And after multiplying by the complex conjugate I get the imaginary part to be



      $$frac{2sin(theta)}{5-4cos(theta)}$$



      Any help would be great, thanks!







      complex-numbers summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 13 at 12:38









      Zacky

      7,3501961




      7,3501961










      asked Jan 1 at 23:29









      PolynomialCPolynomialC

      826




      826






















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$

          Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$



          The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-sum-limitsn-0-infty-frac-sinn-theta2n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$



            The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.






            share|cite|improve this answer









            $endgroup$


















              10












              $begingroup$

              Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$



              The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.






              share|cite|improve this answer









              $endgroup$
















                10












                10








                10





                $begingroup$

                Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$



                The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.






                share|cite|improve this answer









                $endgroup$



                Testing... if $theta=frac{pi}{2}$, the original series is $frac1{2^1}-frac1{2^3}+frac1{2^5}-frac1{2^7}+cdots =left(frac12-frac18right)left(1+frac1{2^4}+frac1{2^8}+cdotsright)$ which becomes $frac38cdotfrac{16}{15}=frac25$



                The official answer claims $frac{1}{5-4cdot 0}=frac15$. Yours claims $frac{2}{5-4cdot 0}=frac25$. Your calculation is right and the official answer is wrong.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 1 at 23:43









                jmerryjmerry

                11.5k1526




                11.5k1526






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058986%2finfinite-summation-sum-limitsn-0-infty-frac-sinn-theta2n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Monofisismo

                    Angular Downloading a file using contenturl with Basic Authentication

                    Olmecas