pandas merge columns to create new column with comma separated values












3















My dataframe has four columns with colors. I want to combine them into one column called "Colors" and use commas to separate the values.



For example, I'm trying to combine into a Colors column like this :



ID  Black Red  Blue  Green  Colors   
120 NaN red NaN green red, green
121 black Nan blue NaN black, blue


My code is:



df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x), axis=1)


But the output for ID 120 is:
, red, , green



And the output for ID 121 is:
black, , blue,



FOUND MY PROBLEM!
Earlier in my code, I replaced "None" with " " instead of NaN. Upon making the change, plus incorporating feedback to insert [x.notnull()], it works!



df['Black'].replace('None', np.nan, inplace=True)
df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis=1)









share|improve this question





























    3















    My dataframe has four columns with colors. I want to combine them into one column called "Colors" and use commas to separate the values.



    For example, I'm trying to combine into a Colors column like this :



    ID  Black Red  Blue  Green  Colors   
    120 NaN red NaN green red, green
    121 black Nan blue NaN black, blue


    My code is:



    df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x), axis=1)


    But the output for ID 120 is:
    , red, , green



    And the output for ID 121 is:
    black, , blue,



    FOUND MY PROBLEM!
    Earlier in my code, I replaced "None" with " " instead of NaN. Upon making the change, plus incorporating feedback to insert [x.notnull()], it works!



    df['Black'].replace('None', np.nan, inplace=True)
    df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis=1)









    share|improve this question



























      3












      3








      3








      My dataframe has four columns with colors. I want to combine them into one column called "Colors" and use commas to separate the values.



      For example, I'm trying to combine into a Colors column like this :



      ID  Black Red  Blue  Green  Colors   
      120 NaN red NaN green red, green
      121 black Nan blue NaN black, blue


      My code is:



      df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x), axis=1)


      But the output for ID 120 is:
      , red, , green



      And the output for ID 121 is:
      black, , blue,



      FOUND MY PROBLEM!
      Earlier in my code, I replaced "None" with " " instead of NaN. Upon making the change, plus incorporating feedback to insert [x.notnull()], it works!



      df['Black'].replace('None', np.nan, inplace=True)
      df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis=1)









      share|improve this question
















      My dataframe has four columns with colors. I want to combine them into one column called "Colors" and use commas to separate the values.



      For example, I'm trying to combine into a Colors column like this :



      ID  Black Red  Blue  Green  Colors   
      120 NaN red NaN green red, green
      121 black Nan blue NaN black, blue


      My code is:



      df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x), axis=1)


      But the output for ID 120 is:
      , red, , green



      And the output for ID 121 is:
      black, , blue,



      FOUND MY PROBLEM!
      Earlier in my code, I replaced "None" with " " instead of NaN. Upon making the change, plus incorporating feedback to insert [x.notnull()], it works!



      df['Black'].replace('None', np.nan, inplace=True)
      df['Colors'] = df[['Black, 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis=1)






      python pandas merge multiple-columns comma






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 2 at 1:43







      KRDavis

















      asked Jan 1 at 21:35









      KRDavisKRDavis

      204




      204
























          2 Answers
          2






          active

          oldest

          votes


















          1














          You just need to handle NaNs



          df['Colors'] = df[['Black', 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis = 1)

          ID Black Red Blue Green Colors
          0 120 NaN red NaN green red, green
          1 121 black NaN blue NaN black, blue





          share|improve this answer
























          • Happy new year ~ :-)

            – Wen-Ben
            Jan 1 at 22:04











          • @W-B, wish you a very happy new year :)

            – Vaishali
            Jan 2 at 4:31



















          1














          Using dot



          s=df.iloc[:,1:]
          s.notnull()
          Black Red Blue Green
          0 False True False True
          1 True True True False
          s.notnull().dot(s.columns+',').str[:-1]
          0 Red,Green
          1 Black,Red,Blue
          dtype: object

          df['color']=s.notnull().dot(s.columns+',').str[:-1]





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53999131%2fpandas-merge-columns-to-create-new-column-with-comma-separated-values%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            You just need to handle NaNs



            df['Colors'] = df[['Black', 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis = 1)

            ID Black Red Blue Green Colors
            0 120 NaN red NaN green red, green
            1 121 black NaN blue NaN black, blue





            share|improve this answer
























            • Happy new year ~ :-)

              – Wen-Ben
              Jan 1 at 22:04











            • @W-B, wish you a very happy new year :)

              – Vaishali
              Jan 2 at 4:31
















            1














            You just need to handle NaNs



            df['Colors'] = df[['Black', 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis = 1)

            ID Black Red Blue Green Colors
            0 120 NaN red NaN green red, green
            1 121 black NaN blue NaN black, blue





            share|improve this answer
























            • Happy new year ~ :-)

              – Wen-Ben
              Jan 1 at 22:04











            • @W-B, wish you a very happy new year :)

              – Vaishali
              Jan 2 at 4:31














            1












            1








            1







            You just need to handle NaNs



            df['Colors'] = df[['Black', 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis = 1)

            ID Black Red Blue Green Colors
            0 120 NaN red NaN green red, green
            1 121 black NaN blue NaN black, blue





            share|improve this answer













            You just need to handle NaNs



            df['Colors'] = df[['Black', 'Red', 'Blue', 'Green']].apply(lambda x: ', '.join(x[x.notnull()]), axis = 1)

            ID Black Red Blue Green Colors
            0 120 NaN red NaN green red, green
            1 121 black NaN blue NaN black, blue






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Jan 1 at 21:40









            VaishaliVaishali

            21.4k41335




            21.4k41335













            • Happy new year ~ :-)

              – Wen-Ben
              Jan 1 at 22:04











            • @W-B, wish you a very happy new year :)

              – Vaishali
              Jan 2 at 4:31



















            • Happy new year ~ :-)

              – Wen-Ben
              Jan 1 at 22:04











            • @W-B, wish you a very happy new year :)

              – Vaishali
              Jan 2 at 4:31

















            Happy new year ~ :-)

            – Wen-Ben
            Jan 1 at 22:04





            Happy new year ~ :-)

            – Wen-Ben
            Jan 1 at 22:04













            @W-B, wish you a very happy new year :)

            – Vaishali
            Jan 2 at 4:31





            @W-B, wish you a very happy new year :)

            – Vaishali
            Jan 2 at 4:31













            1














            Using dot



            s=df.iloc[:,1:]
            s.notnull()
            Black Red Blue Green
            0 False True False True
            1 True True True False
            s.notnull().dot(s.columns+',').str[:-1]
            0 Red,Green
            1 Black,Red,Blue
            dtype: object

            df['color']=s.notnull().dot(s.columns+',').str[:-1]





            share|improve this answer




























              1














              Using dot



              s=df.iloc[:,1:]
              s.notnull()
              Black Red Blue Green
              0 False True False True
              1 True True True False
              s.notnull().dot(s.columns+',').str[:-1]
              0 Red,Green
              1 Black,Red,Blue
              dtype: object

              df['color']=s.notnull().dot(s.columns+',').str[:-1]





              share|improve this answer


























                1












                1








                1







                Using dot



                s=df.iloc[:,1:]
                s.notnull()
                Black Red Blue Green
                0 False True False True
                1 True True True False
                s.notnull().dot(s.columns+',').str[:-1]
                0 Red,Green
                1 Black,Red,Blue
                dtype: object

                df['color']=s.notnull().dot(s.columns+',').str[:-1]





                share|improve this answer













                Using dot



                s=df.iloc[:,1:]
                s.notnull()
                Black Red Blue Green
                0 False True False True
                1 True True True False
                s.notnull().dot(s.columns+',').str[:-1]
                0 Red,Green
                1 Black,Red,Blue
                dtype: object

                df['color']=s.notnull().dot(s.columns+',').str[:-1]






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 1 at 22:04









                Wen-BenWen-Ben

                113k83368




                113k83368






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53999131%2fpandas-merge-columns-to-create-new-column-with-comma-separated-values%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Monofisismo

                    Angular Downloading a file using contenturl with Basic Authentication

                    Olmecas