Access nested dictionary items via a list of keys?
I have a complex dictionary structure which I would like to access via a list of keys to address the correct item.
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist = ["a", "r"]
or
maplist = ["b", "v", "y"]
I have made the following code which works but I'm sure there is a better and more efficient way to do this if anyone has an idea.
# Get a given data from a dictionary with position provided as a list
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
# Set a given data in a dictionary with position provided as a list
def setInDict(dataDict, mapList, value):
for k in mapList[:-1]: dataDict = dataDict[k]
dataDict[mapList[-1]] = value
python list dictionary
add a comment |
I have a complex dictionary structure which I would like to access via a list of keys to address the correct item.
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist = ["a", "r"]
or
maplist = ["b", "v", "y"]
I have made the following code which works but I'm sure there is a better and more efficient way to do this if anyone has an idea.
# Get a given data from a dictionary with position provided as a list
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
# Set a given data in a dictionary with position provided as a list
def setInDict(dataDict, mapList, value):
for k in mapList[:-1]: dataDict = dataDict[k]
dataDict[mapList[-1]] = value
python list dictionary
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55
add a comment |
I have a complex dictionary structure which I would like to access via a list of keys to address the correct item.
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist = ["a", "r"]
or
maplist = ["b", "v", "y"]
I have made the following code which works but I'm sure there is a better and more efficient way to do this if anyone has an idea.
# Get a given data from a dictionary with position provided as a list
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
# Set a given data in a dictionary with position provided as a list
def setInDict(dataDict, mapList, value):
for k in mapList[:-1]: dataDict = dataDict[k]
dataDict[mapList[-1]] = value
python list dictionary
I have a complex dictionary structure which I would like to access via a list of keys to address the correct item.
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist = ["a", "r"]
or
maplist = ["b", "v", "y"]
I have made the following code which works but I'm sure there is a better and more efficient way to do this if anyone has an idea.
# Get a given data from a dictionary with position provided as a list
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
# Set a given data in a dictionary with position provided as a list
def setInDict(dataDict, mapList, value):
for k in mapList[:-1]: dataDict = dataDict[k]
dataDict[mapList[-1]] = value
python list dictionary
python list dictionary
edited Dec 29 '18 at 3:04
wim
159k50304436
159k50304436
asked Feb 4 '13 at 18:04
kolergykolergy
636266
636266
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55
add a comment |
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55
add a comment |
14 Answers
14
active
oldest
votes
Use reduce()
to traverse the dictionary:
from functools import reduce # forward compatibility for Python 3
import operator
def getFromDict(dataDict, mapList):
return reduce(operator.getitem, mapList, dataDict)
and reuse getFromDict
to find the location to store the value for setInDict()
:
def setInDict(dataDict, mapList, value):
getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value
All but the last element in mapList
is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.
Demo:
>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}
Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path()
and set_by_path()
:
from functools import reduce # forward compatibility for Python 3
import operator
def get_by_path(root, items):
"""Access a nested object in root by item sequence."""
return reduce(operator.getitem, items, root)
def set_by_path(root, items, value):
"""Set a value in a nested object in root by item sequence."""
get_by_path(root, items[:-1])[items[-1]] = value
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
@user1353510: for a default value, usetry:
,except (KeyError, IndexError): return default_value
around the currentreturn
line.
– Martijn Pieters♦
Feb 11 '15 at 12:05
|
show 5 more comments
- The accepted solution won't work directly for python3 - it will need an
from functools import reduce
. - Also it seems more pythonic to use a
for
loop.
See the quote from What’s New In Python 3.0.
Removed
reduce()
. Usefunctools.reduce()
if you really need it; however, 99 percent of the time an explicitfor
loop is more readable.
- Next, the accepted solution doesn't set non-existing nested keys (it returns a
KeyError
) - see @eafit's answer for a solution
So why not use the suggested method from kolergy's question for getting a value:
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
And the code from @eafit's answer for setting a value:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Both work straight in python 2 and 3
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutablegetFromDict
has the potential to destroy the caller'sdataDict
. I wouldcopy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.
– Dylan F
Jun 13 '18 at 3:33
add a comment |
Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.
The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:
def keysInDict(dataDict, parent=):
if not isinstance(dataDict, dict):
return [tuple(parent)]
else:
return reduce(list.__add__,
[keysInDict(v,parent+[k]) for k,v in dataDict.items()], )
One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).
def dict_to_df(dataDict):
ret =
for k in keysInDict(dataDict):
v = np.array( getFromDict(dataDict, k), )
v = pd.DataFrame(v)
v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
ret.append(v)
return reduce(pd.DataFrame.join, ret)
add a comment |
This library may be helpful: https://github.com/akesterson/dpath-python
A python library for accessing and searching dictionaries via
/slashed/paths ala xpath
Basically it lets you glob over a dictionary as if it were a
filesystem.
add a comment |
Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y
def flatten(mydict):
new_dict = {}
for key,value in mydict.items():
if type(value) == dict:
_dict = {':'.join([key, _key]):_value for _key, _value in flatten(value).items()}
new_dict.update(_dict)
else:
new_dict[key]=value
return new_dict
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}
This way you can simply look up items using flat_dict['b:v:y']
which will give you 1
.
And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.
add a comment |
How about using recursive functions?
To get a value:
def getFromDict(dataDict, maplist):
first, rest = maplist[0], maplist[1:]
if rest:
# if `rest` is not empty, run the function recursively
return getFromDict(dataDict[first], rest)
else:
return dataDict[first]
And to set a value:
def setInDict(dataDict, maplist, value):
first, rest = maplist[0], maplist[1:]
if rest:
try:
if not isinstance(dataDict[first], dict):
# if the key is not a dict, then make it a dict
dataDict[first] = {}
except KeyError:
# if key doesn't exist, create one
dataDict[first] = {}
setInDict(dataDict[first], rest, value)
else:
dataDict[first] = value
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
add a comment |
Pure Python style, without any import:
def nested_set(element, value, *keys):
if type(element) is not dict:
raise AttributeError('nested_set() expects dict as first argument.')
if len(keys) < 2:
raise AttributeError('nested_set() expects at least three arguments, not enough given.')
_keys = keys[:-1]
_element = element
for key in _keys:
_element = _element[key]
_element[keys[-1]] = value
example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)
Output
{'foo': {'bar': 'yay'}}
add a comment |
An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):
def get_value(self,your_dict,*keys):
curr_dict_ = your_dict
for k in keys:
v = curr_dict.get(k,None)
if v is None:
break
if isinstance(v,dict):
curr_dict = v
return v
In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.
add a comment |
How about check and then set dict element without processing all indexes twice?
Solution:
def nested_yield(nested, keys_list):
"""
Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
:param nested: list or dict of lists or dicts
:param keys_list: list of indexes/keys
"""
if not len(keys_list): # assign to 1st level list
if isinstance(nested, list):
while True:
nested[:] = yield nested
else:
raise IndexError('Only lists can take element without key')
last_key = keys_list.pop()
for key in keys_list:
nested = nested[key]
while True:
try:
nested[last_key] = yield nested[last_key]
except IndexError as e:
print('no index {} in {}'.format(last_key, nested))
yield None
Example workflow:
ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
# process element
...
else:
# extend/update nested data
ny.send(new_data_element)
...
ny.close()
Test
>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
ny = nested_yield(cfg, ['Options',1,1,1])
ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()
add a comment |
Solved this with recursion:
def get(d,l):
if len(l)==1: return d[l[0]]
return get(d[l[0]],l[1:])
Using your example:
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2
add a comment |
If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:
from functools import reduce
def get_furthest(s, path):
'''
Gets the furthest value along a given key path in a subscriptable structure.
subscriptable, list -> any
:param s: the subscriptable structure to examine
:param path: the lookup path to follow
:return: a tuple of the value at the furthest valid key, and whether the full path is valid
'''
def step_key(acc, key):
s = acc[0]
if isinstance(s, str):
return (s, False)
try:
return (s[key], acc[1])
except LookupError:
return (s, False)
return reduce(step_key, path, (s, True))
def get_val(s, path):
val, successful = get_furthest(s, path)
if successful:
return val
else:
raise LookupError('Invalid lookup path: {}'.format(path))
def set_val(s, path, value):
get_val(s, path[:-1])[path[-1]] = value
add a comment |
It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250
Here's my implementation.
Usage:
To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5
To get a nested attribute call gattr(my_dict, 1, 2)
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
add a comment |
Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary
dict is the dictionary containing our value
list is a list of "steps" towards our value
def getnestedvalue(dict, list):
length = len(list)
try:
for depth, key in enumerate(list):
if depth == length - 1:
output = dict[key]
return output
dict = dict[key]
except (KeyError, TypeError):
return None
return None
add a comment |
a method for concatenating strings:
def get_sub_object_from_path(dict_name, map_list):
for i in map_list:
_string = "['%s']" % i
dict_name += _string
value = eval(dict_name)
return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f14692690%2faccess-nested-dictionary-items-via-a-list-of-keys%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
14 Answers
14
active
oldest
votes
14 Answers
14
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use reduce()
to traverse the dictionary:
from functools import reduce # forward compatibility for Python 3
import operator
def getFromDict(dataDict, mapList):
return reduce(operator.getitem, mapList, dataDict)
and reuse getFromDict
to find the location to store the value for setInDict()
:
def setInDict(dataDict, mapList, value):
getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value
All but the last element in mapList
is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.
Demo:
>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}
Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path()
and set_by_path()
:
from functools import reduce # forward compatibility for Python 3
import operator
def get_by_path(root, items):
"""Access a nested object in root by item sequence."""
return reduce(operator.getitem, items, root)
def set_by_path(root, items, value):
"""Set a value in a nested object in root by item sequence."""
get_by_path(root, items[:-1])[items[-1]] = value
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
@user1353510: for a default value, usetry:
,except (KeyError, IndexError): return default_value
around the currentreturn
line.
– Martijn Pieters♦
Feb 11 '15 at 12:05
|
show 5 more comments
Use reduce()
to traverse the dictionary:
from functools import reduce # forward compatibility for Python 3
import operator
def getFromDict(dataDict, mapList):
return reduce(operator.getitem, mapList, dataDict)
and reuse getFromDict
to find the location to store the value for setInDict()
:
def setInDict(dataDict, mapList, value):
getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value
All but the last element in mapList
is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.
Demo:
>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}
Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path()
and set_by_path()
:
from functools import reduce # forward compatibility for Python 3
import operator
def get_by_path(root, items):
"""Access a nested object in root by item sequence."""
return reduce(operator.getitem, items, root)
def set_by_path(root, items, value):
"""Set a value in a nested object in root by item sequence."""
get_by_path(root, items[:-1])[items[-1]] = value
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
@user1353510: for a default value, usetry:
,except (KeyError, IndexError): return default_value
around the currentreturn
line.
– Martijn Pieters♦
Feb 11 '15 at 12:05
|
show 5 more comments
Use reduce()
to traverse the dictionary:
from functools import reduce # forward compatibility for Python 3
import operator
def getFromDict(dataDict, mapList):
return reduce(operator.getitem, mapList, dataDict)
and reuse getFromDict
to find the location to store the value for setInDict()
:
def setInDict(dataDict, mapList, value):
getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value
All but the last element in mapList
is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.
Demo:
>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}
Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path()
and set_by_path()
:
from functools import reduce # forward compatibility for Python 3
import operator
def get_by_path(root, items):
"""Access a nested object in root by item sequence."""
return reduce(operator.getitem, items, root)
def set_by_path(root, items, value):
"""Set a value in a nested object in root by item sequence."""
get_by_path(root, items[:-1])[items[-1]] = value
Use reduce()
to traverse the dictionary:
from functools import reduce # forward compatibility for Python 3
import operator
def getFromDict(dataDict, mapList):
return reduce(operator.getitem, mapList, dataDict)
and reuse getFromDict
to find the location to store the value for setInDict()
:
def setInDict(dataDict, mapList, value):
getFromDict(dataDict, mapList[:-1])[mapList[-1]] = value
All but the last element in mapList
is needed to find the 'parent' dictionary to add the value to, then use the last element to set the value to the right key.
Demo:
>>> getFromDict(dataDict, ["a", "r"])
1
>>> getFromDict(dataDict, ["b", "v", "y"])
2
>>> setInDict(dataDict, ["b", "v", "w"], 4)
>>> import pprint
>>> pprint.pprint(dataDict)
{'a': {'r': 1, 's': 2, 't': 3},
'b': {'u': 1, 'v': {'w': 4, 'x': 1, 'y': 2, 'z': 3}, 'w': 3}}
Note that the Python PEP8 style guide prescribes snake_case names for functions. The above works equally well for lists or a mix of dictionaries and lists, so the names should really be get_by_path()
and set_by_path()
:
from functools import reduce # forward compatibility for Python 3
import operator
def get_by_path(root, items):
"""Access a nested object in root by item sequence."""
return reduce(operator.getitem, items, root)
def set_by_path(root, items, value):
"""Set a value in a nested object in root by item sequence."""
get_by_path(root, items[:-1])[items[-1]] = value
edited Jul 29 '18 at 21:12
answered Feb 4 '13 at 18:07
Martijn Pieters♦Martijn Pieters
704k13324522279
704k13324522279
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
@user1353510: for a default value, usetry:
,except (KeyError, IndexError): return default_value
around the currentreturn
line.
– Martijn Pieters♦
Feb 11 '15 at 12:05
|
show 5 more comments
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
@user1353510: for a default value, usetry:
,except (KeyError, IndexError): return default_value
around the currentreturn
line.
– Martijn Pieters♦
Feb 11 '15 at 12:05
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
How much such traversing is reliable for arbitrary nested structures? Will it work for mixed dictionaries with nested lists as well? How do I modify getFromDict() to supply default_value and to have default default_value as None? I am novice in Python with many years of PHP development and before C development.
– Dmitriy Sintsov
Feb 11 '15 at 10:51
1
1
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
Also nested mapped set should create non-existing nodes, imo: lists for integer keys, dictionaries for string keys.
– Dmitriy Sintsov
Feb 11 '15 at 10:59
1
1
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: as it happens, regular indexing syntax is used here, so it'll support lists inside dictionaries too. Just pass in integer indexes for those.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
@user1353510: different usecases call for different behaviour. The code here doesn't create intermediaries, no.
– Martijn Pieters♦
Feb 11 '15 at 12:04
1
1
@user1353510: for a default value, use
try:
, except (KeyError, IndexError): return default_value
around the current return
line.– Martijn Pieters♦
Feb 11 '15 at 12:05
@user1353510: for a default value, use
try:
, except (KeyError, IndexError): return default_value
around the current return
line.– Martijn Pieters♦
Feb 11 '15 at 12:05
|
show 5 more comments
- The accepted solution won't work directly for python3 - it will need an
from functools import reduce
. - Also it seems more pythonic to use a
for
loop.
See the quote from What’s New In Python 3.0.
Removed
reduce()
. Usefunctools.reduce()
if you really need it; however, 99 percent of the time an explicitfor
loop is more readable.
- Next, the accepted solution doesn't set non-existing nested keys (it returns a
KeyError
) - see @eafit's answer for a solution
So why not use the suggested method from kolergy's question for getting a value:
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
And the code from @eafit's answer for setting a value:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Both work straight in python 2 and 3
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutablegetFromDict
has the potential to destroy the caller'sdataDict
. I wouldcopy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.
– Dylan F
Jun 13 '18 at 3:33
add a comment |
- The accepted solution won't work directly for python3 - it will need an
from functools import reduce
. - Also it seems more pythonic to use a
for
loop.
See the quote from What’s New In Python 3.0.
Removed
reduce()
. Usefunctools.reduce()
if you really need it; however, 99 percent of the time an explicitfor
loop is more readable.
- Next, the accepted solution doesn't set non-existing nested keys (it returns a
KeyError
) - see @eafit's answer for a solution
So why not use the suggested method from kolergy's question for getting a value:
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
And the code from @eafit's answer for setting a value:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Both work straight in python 2 and 3
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutablegetFromDict
has the potential to destroy the caller'sdataDict
. I wouldcopy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.
– Dylan F
Jun 13 '18 at 3:33
add a comment |
- The accepted solution won't work directly for python3 - it will need an
from functools import reduce
. - Also it seems more pythonic to use a
for
loop.
See the quote from What’s New In Python 3.0.
Removed
reduce()
. Usefunctools.reduce()
if you really need it; however, 99 percent of the time an explicitfor
loop is more readable.
- Next, the accepted solution doesn't set non-existing nested keys (it returns a
KeyError
) - see @eafit's answer for a solution
So why not use the suggested method from kolergy's question for getting a value:
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
And the code from @eafit's answer for setting a value:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Both work straight in python 2 and 3
- The accepted solution won't work directly for python3 - it will need an
from functools import reduce
. - Also it seems more pythonic to use a
for
loop.
See the quote from What’s New In Python 3.0.
Removed
reduce()
. Usefunctools.reduce()
if you really need it; however, 99 percent of the time an explicitfor
loop is more readable.
- Next, the accepted solution doesn't set non-existing nested keys (it returns a
KeyError
) - see @eafit's answer for a solution
So why not use the suggested method from kolergy's question for getting a value:
def getFromDict(dataDict, mapList):
for k in mapList: dataDict = dataDict[k]
return dataDict
And the code from @eafit's answer for setting a value:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Both work straight in python 2 and 3
edited Mar 18 '18 at 15:43
answered Jun 8 '16 at 13:47
DomTomCatDomTomCat
3,96712745
3,96712745
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutablegetFromDict
has the potential to destroy the caller'sdataDict
. I wouldcopy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.
– Dylan F
Jun 13 '18 at 3:33
add a comment |
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutablegetFromDict
has the potential to destroy the caller'sdataDict
. I wouldcopy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.
– Dylan F
Jun 13 '18 at 3:33
1
1
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutable
getFromDict
has the potential to destroy the caller's dataDict
. I would copy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.– Dylan F
Jun 13 '18 at 3:33
I prefer this solution - but be careful. If I'm not mistaken, since Python dictionaries are not immutable
getFromDict
has the potential to destroy the caller's dataDict
. I would copy.deepcopy(dataDict)
first. Of course, (as written) this behavior is desired in the second function.– Dylan F
Jun 13 '18 at 3:33
add a comment |
Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.
The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:
def keysInDict(dataDict, parent=):
if not isinstance(dataDict, dict):
return [tuple(parent)]
else:
return reduce(list.__add__,
[keysInDict(v,parent+[k]) for k,v in dataDict.items()], )
One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).
def dict_to_df(dataDict):
ret =
for k in keysInDict(dataDict):
v = np.array( getFromDict(dataDict, k), )
v = pd.DataFrame(v)
v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
ret.append(v)
return reduce(pd.DataFrame.join, ret)
add a comment |
Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.
The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:
def keysInDict(dataDict, parent=):
if not isinstance(dataDict, dict):
return [tuple(parent)]
else:
return reduce(list.__add__,
[keysInDict(v,parent+[k]) for k,v in dataDict.items()], )
One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).
def dict_to_df(dataDict):
ret =
for k in keysInDict(dataDict):
v = np.array( getFromDict(dataDict, k), )
v = pd.DataFrame(v)
v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
ret.append(v)
return reduce(pd.DataFrame.join, ret)
add a comment |
Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.
The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:
def keysInDict(dataDict, parent=):
if not isinstance(dataDict, dict):
return [tuple(parent)]
else:
return reduce(list.__add__,
[keysInDict(v,parent+[k]) for k,v in dataDict.items()], )
One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).
def dict_to_df(dataDict):
ret =
for k in keysInDict(dataDict):
v = np.array( getFromDict(dataDict, k), )
v = pd.DataFrame(v)
v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
ret.append(v)
return reduce(pd.DataFrame.join, ret)
Using reduce is clever, but the OP's set method may have issues if the parent keys do not pre-exist in the nested dictionary. Since this is the first SO post I saw for this subject in my google search, I would like to make it slightly better.
The set method in ( Setting a value in a nested python dictionary given a list of indices and value ) seems more robust to missing parental keys. To copy it over:
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
Also, it can be convenient to have a method that traverses the key tree and get all the absolute key paths, for which I have created:
def keysInDict(dataDict, parent=):
if not isinstance(dataDict, dict):
return [tuple(parent)]
else:
return reduce(list.__add__,
[keysInDict(v,parent+[k]) for k,v in dataDict.items()], )
One use of it is to convert the nested tree to a pandas DataFrame, using the following code (assuming that all leafs in the nested dictionary have the same depth).
def dict_to_df(dataDict):
ret =
for k in keysInDict(dataDict):
v = np.array( getFromDict(dataDict, k), )
v = pd.DataFrame(v)
v.columns = pd.MultiIndex.from_product(list(k) + [v.columns])
ret.append(v)
return reduce(pd.DataFrame.join, ret)
edited May 23 '17 at 12:26
Community♦
11
11
answered Apr 29 '16 at 4:38
eafiteafit
27336
27336
add a comment |
add a comment |
This library may be helpful: https://github.com/akesterson/dpath-python
A python library for accessing and searching dictionaries via
/slashed/paths ala xpath
Basically it lets you glob over a dictionary as if it were a
filesystem.
add a comment |
This library may be helpful: https://github.com/akesterson/dpath-python
A python library for accessing and searching dictionaries via
/slashed/paths ala xpath
Basically it lets you glob over a dictionary as if it were a
filesystem.
add a comment |
This library may be helpful: https://github.com/akesterson/dpath-python
A python library for accessing and searching dictionaries via
/slashed/paths ala xpath
Basically it lets you glob over a dictionary as if it were a
filesystem.
This library may be helpful: https://github.com/akesterson/dpath-python
A python library for accessing and searching dictionaries via
/slashed/paths ala xpath
Basically it lets you glob over a dictionary as if it were a
filesystem.
edited Jul 7 '15 at 16:55
jonrsharpe
77.1k11103208
77.1k11103208
answered Apr 29 '15 at 6:02
DMfllDMfll
99211830
99211830
add a comment |
add a comment |
Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y
def flatten(mydict):
new_dict = {}
for key,value in mydict.items():
if type(value) == dict:
_dict = {':'.join([key, _key]):_value for _key, _value in flatten(value).items()}
new_dict.update(_dict)
else:
new_dict[key]=value
return new_dict
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}
This way you can simply look up items using flat_dict['b:v:y']
which will give you 1
.
And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.
add a comment |
Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y
def flatten(mydict):
new_dict = {}
for key,value in mydict.items():
if type(value) == dict:
_dict = {':'.join([key, _key]):_value for _key, _value in flatten(value).items()}
new_dict.update(_dict)
else:
new_dict[key]=value
return new_dict
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}
This way you can simply look up items using flat_dict['b:v:y']
which will give you 1
.
And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.
add a comment |
Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y
def flatten(mydict):
new_dict = {}
for key,value in mydict.items():
if type(value) == dict:
_dict = {':'.join([key, _key]):_value for _key, _value in flatten(value).items()}
new_dict.update(_dict)
else:
new_dict[key]=value
return new_dict
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}
This way you can simply look up items using flat_dict['b:v:y']
which will give you 1
.
And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.
Instead of taking a performance hit each time you want to look up a value, how about you flatten the dictionary once then simply look up the key like b:v:y
def flatten(mydict):
new_dict = {}
for key,value in mydict.items():
if type(value) == dict:
_dict = {':'.join([key, _key]):_value for _key, _value in flatten(value).items()}
new_dict.update(_dict)
else:
new_dict[key]=value
return new_dict
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
flat_dict = flatten(dataDict)
print flat_dict
{'b:w': 3, 'b:u': 1, 'b:v:y': 2, 'b:v:x': 1, 'b:v:z': 3, 'a:r': 1, 'a:s': 2, 'a:t': 3}
This way you can simply look up items using flat_dict['b:v:y']
which will give you 1
.
And instead of traversing the dictionary on each lookup, you may be able to speed this up by flattening the dictionary and saving the output so that a lookup from cold start would mean loading up the flattened dictionary and simply performing a key/value lookup with no traversal.
answered Mar 1 '17 at 2:07
OkezieEOkezieE
3,36711823
3,36711823
add a comment |
add a comment |
How about using recursive functions?
To get a value:
def getFromDict(dataDict, maplist):
first, rest = maplist[0], maplist[1:]
if rest:
# if `rest` is not empty, run the function recursively
return getFromDict(dataDict[first], rest)
else:
return dataDict[first]
And to set a value:
def setInDict(dataDict, maplist, value):
first, rest = maplist[0], maplist[1:]
if rest:
try:
if not isinstance(dataDict[first], dict):
# if the key is not a dict, then make it a dict
dataDict[first] = {}
except KeyError:
# if key doesn't exist, create one
dataDict[first] = {}
setInDict(dataDict[first], rest, value)
else:
dataDict[first] = value
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
add a comment |
How about using recursive functions?
To get a value:
def getFromDict(dataDict, maplist):
first, rest = maplist[0], maplist[1:]
if rest:
# if `rest` is not empty, run the function recursively
return getFromDict(dataDict[first], rest)
else:
return dataDict[first]
And to set a value:
def setInDict(dataDict, maplist, value):
first, rest = maplist[0], maplist[1:]
if rest:
try:
if not isinstance(dataDict[first], dict):
# if the key is not a dict, then make it a dict
dataDict[first] = {}
except KeyError:
# if key doesn't exist, create one
dataDict[first] = {}
setInDict(dataDict[first], rest, value)
else:
dataDict[first] = value
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
add a comment |
How about using recursive functions?
To get a value:
def getFromDict(dataDict, maplist):
first, rest = maplist[0], maplist[1:]
if rest:
# if `rest` is not empty, run the function recursively
return getFromDict(dataDict[first], rest)
else:
return dataDict[first]
And to set a value:
def setInDict(dataDict, maplist, value):
first, rest = maplist[0], maplist[1:]
if rest:
try:
if not isinstance(dataDict[first], dict):
# if the key is not a dict, then make it a dict
dataDict[first] = {}
except KeyError:
# if key doesn't exist, create one
dataDict[first] = {}
setInDict(dataDict[first], rest, value)
else:
dataDict[first] = value
How about using recursive functions?
To get a value:
def getFromDict(dataDict, maplist):
first, rest = maplist[0], maplist[1:]
if rest:
# if `rest` is not empty, run the function recursively
return getFromDict(dataDict[first], rest)
else:
return dataDict[first]
And to set a value:
def setInDict(dataDict, maplist, value):
first, rest = maplist[0], maplist[1:]
if rest:
try:
if not isinstance(dataDict[first], dict):
# if the key is not a dict, then make it a dict
dataDict[first] = {}
except KeyError:
# if key doesn't exist, create one
dataDict[first] = {}
setInDict(dataDict[first], rest, value)
else:
dataDict[first] = value
edited Dec 8 '17 at 23:30
answered Dec 8 '17 at 22:56
xyresxyres
9,32732345
9,32732345
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
add a comment |
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
1
1
Great solution!
– josifoski
Jun 25 '18 at 14:21
Great solution!
– josifoski
Jun 25 '18 at 14:21
add a comment |
Pure Python style, without any import:
def nested_set(element, value, *keys):
if type(element) is not dict:
raise AttributeError('nested_set() expects dict as first argument.')
if len(keys) < 2:
raise AttributeError('nested_set() expects at least three arguments, not enough given.')
_keys = keys[:-1]
_element = element
for key in _keys:
_element = _element[key]
_element[keys[-1]] = value
example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)
Output
{'foo': {'bar': 'yay'}}
add a comment |
Pure Python style, without any import:
def nested_set(element, value, *keys):
if type(element) is not dict:
raise AttributeError('nested_set() expects dict as first argument.')
if len(keys) < 2:
raise AttributeError('nested_set() expects at least three arguments, not enough given.')
_keys = keys[:-1]
_element = element
for key in _keys:
_element = _element[key]
_element[keys[-1]] = value
example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)
Output
{'foo': {'bar': 'yay'}}
add a comment |
Pure Python style, without any import:
def nested_set(element, value, *keys):
if type(element) is not dict:
raise AttributeError('nested_set() expects dict as first argument.')
if len(keys) < 2:
raise AttributeError('nested_set() expects at least three arguments, not enough given.')
_keys = keys[:-1]
_element = element
for key in _keys:
_element = _element[key]
_element[keys[-1]] = value
example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)
Output
{'foo': {'bar': 'yay'}}
Pure Python style, without any import:
def nested_set(element, value, *keys):
if type(element) is not dict:
raise AttributeError('nested_set() expects dict as first argument.')
if len(keys) < 2:
raise AttributeError('nested_set() expects at least three arguments, not enough given.')
_keys = keys[:-1]
_element = element
for key in _keys:
_element = _element[key]
_element[keys[-1]] = value
example = {"foo": { "bar": { "baz": "ok" } } }
keys = ['foo', 'bar']
nested_set(example, "yay", *keys)
print(example)
Output
{'foo': {'bar': 'yay'}}
answered Feb 16 '18 at 14:00
ArountArount
4,7781025
4,7781025
add a comment |
add a comment |
An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):
def get_value(self,your_dict,*keys):
curr_dict_ = your_dict
for k in keys:
v = curr_dict.get(k,None)
if v is None:
break
if isinstance(v,dict):
curr_dict = v
return v
In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.
add a comment |
An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):
def get_value(self,your_dict,*keys):
curr_dict_ = your_dict
for k in keys:
v = curr_dict.get(k,None)
if v is None:
break
if isinstance(v,dict):
curr_dict = v
return v
In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.
add a comment |
An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):
def get_value(self,your_dict,*keys):
curr_dict_ = your_dict
for k in keys:
v = curr_dict.get(k,None)
if v is None:
break
if isinstance(v,dict):
curr_dict = v
return v
In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.
An alternative way if you don't want to raise errors if one of the keys is absent (so that your main code can run without interruption):
def get_value(self,your_dict,*keys):
curr_dict_ = your_dict
for k in keys:
v = curr_dict.get(k,None)
if v is None:
break
if isinstance(v,dict):
curr_dict = v
return v
In this case, if any of the input keys is not present, None is returned, which can be used as a check in your main code to perform an alternative task.
answered Mar 16 '18 at 1:30
PulkitPulkit
415
415
add a comment |
add a comment |
How about check and then set dict element without processing all indexes twice?
Solution:
def nested_yield(nested, keys_list):
"""
Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
:param nested: list or dict of lists or dicts
:param keys_list: list of indexes/keys
"""
if not len(keys_list): # assign to 1st level list
if isinstance(nested, list):
while True:
nested[:] = yield nested
else:
raise IndexError('Only lists can take element without key')
last_key = keys_list.pop()
for key in keys_list:
nested = nested[key]
while True:
try:
nested[last_key] = yield nested[last_key]
except IndexError as e:
print('no index {} in {}'.format(last_key, nested))
yield None
Example workflow:
ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
# process element
...
else:
# extend/update nested data
ny.send(new_data_element)
...
ny.close()
Test
>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
ny = nested_yield(cfg, ['Options',1,1,1])
ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()
add a comment |
How about check and then set dict element without processing all indexes twice?
Solution:
def nested_yield(nested, keys_list):
"""
Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
:param nested: list or dict of lists or dicts
:param keys_list: list of indexes/keys
"""
if not len(keys_list): # assign to 1st level list
if isinstance(nested, list):
while True:
nested[:] = yield nested
else:
raise IndexError('Only lists can take element without key')
last_key = keys_list.pop()
for key in keys_list:
nested = nested[key]
while True:
try:
nested[last_key] = yield nested[last_key]
except IndexError as e:
print('no index {} in {}'.format(last_key, nested))
yield None
Example workflow:
ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
# process element
...
else:
# extend/update nested data
ny.send(new_data_element)
...
ny.close()
Test
>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
ny = nested_yield(cfg, ['Options',1,1,1])
ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()
add a comment |
How about check and then set dict element without processing all indexes twice?
Solution:
def nested_yield(nested, keys_list):
"""
Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
:param nested: list or dict of lists or dicts
:param keys_list: list of indexes/keys
"""
if not len(keys_list): # assign to 1st level list
if isinstance(nested, list):
while True:
nested[:] = yield nested
else:
raise IndexError('Only lists can take element without key')
last_key = keys_list.pop()
for key in keys_list:
nested = nested[key]
while True:
try:
nested[last_key] = yield nested[last_key]
except IndexError as e:
print('no index {} in {}'.format(last_key, nested))
yield None
Example workflow:
ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
# process element
...
else:
# extend/update nested data
ny.send(new_data_element)
...
ny.close()
Test
>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
ny = nested_yield(cfg, ['Options',1,1,1])
ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()
How about check and then set dict element without processing all indexes twice?
Solution:
def nested_yield(nested, keys_list):
"""
Get current nested data by send(None) method. Allows change it to Value by calling send(Value) next time
:param nested: list or dict of lists or dicts
:param keys_list: list of indexes/keys
"""
if not len(keys_list): # assign to 1st level list
if isinstance(nested, list):
while True:
nested[:] = yield nested
else:
raise IndexError('Only lists can take element without key')
last_key = keys_list.pop()
for key in keys_list:
nested = nested[key]
while True:
try:
nested[last_key] = yield nested[last_key]
except IndexError as e:
print('no index {} in {}'.format(last_key, nested))
yield None
Example workflow:
ny = nested_yield(nested_dict, nested_address)
data_element = ny.send(None)
if data_element:
# process element
...
else:
# extend/update nested data
ny.send(new_data_element)
...
ny.close()
Test
>>> cfg= {'Options': [[1,[0]],[2,[4,[8,16]]],[3,[9]]]}
ny = nested_yield(cfg, ['Options',1,1,1])
ny.send(None)
[8, 16]
>>> ny.send('Hello!')
'Hello!'
>>> cfg
{'Options': [[1, [0]], [2, [4, 'Hello!']], [3, [9]]]}
>>> ny.close()
edited Aug 22 '18 at 3:40
answered Aug 15 '18 at 9:46
And0kAnd0k
212
212
add a comment |
add a comment |
Solved this with recursion:
def get(d,l):
if len(l)==1: return d[l[0]]
return get(d[l[0]],l[1:])
Using your example:
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2
add a comment |
Solved this with recursion:
def get(d,l):
if len(l)==1: return d[l[0]]
return get(d[l[0]],l[1:])
Using your example:
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2
add a comment |
Solved this with recursion:
def get(d,l):
if len(l)==1: return d[l[0]]
return get(d[l[0]],l[1:])
Using your example:
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2
Solved this with recursion:
def get(d,l):
if len(l)==1: return d[l[0]]
return get(d[l[0]],l[1:])
Using your example:
dataDict = {
"a":{
"r": 1,
"s": 2,
"t": 3
},
"b":{
"u": 1,
"v": {
"x": 1,
"y": 2,
"z": 3
},
"w": 3
}
}
maplist1 = ["a", "r"]
maplist2 = ["b", "v", "y"]
print(get(dataDict, maplist1)) # 1
print(get(dataDict, maplist2)) # 2
answered Mar 5 '18 at 13:38
Poh Zi HowPoh Zi How
3303622
3303622
add a comment |
add a comment |
If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:
from functools import reduce
def get_furthest(s, path):
'''
Gets the furthest value along a given key path in a subscriptable structure.
subscriptable, list -> any
:param s: the subscriptable structure to examine
:param path: the lookup path to follow
:return: a tuple of the value at the furthest valid key, and whether the full path is valid
'''
def step_key(acc, key):
s = acc[0]
if isinstance(s, str):
return (s, False)
try:
return (s[key], acc[1])
except LookupError:
return (s, False)
return reduce(step_key, path, (s, True))
def get_val(s, path):
val, successful = get_furthest(s, path)
if successful:
return val
else:
raise LookupError('Invalid lookup path: {}'.format(path))
def set_val(s, path, value):
get_val(s, path[:-1])[path[-1]] = value
add a comment |
If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:
from functools import reduce
def get_furthest(s, path):
'''
Gets the furthest value along a given key path in a subscriptable structure.
subscriptable, list -> any
:param s: the subscriptable structure to examine
:param path: the lookup path to follow
:return: a tuple of the value at the furthest valid key, and whether the full path is valid
'''
def step_key(acc, key):
s = acc[0]
if isinstance(s, str):
return (s, False)
try:
return (s[key], acc[1])
except LookupError:
return (s, False)
return reduce(step_key, path, (s, True))
def get_val(s, path):
val, successful = get_furthest(s, path)
if successful:
return val
else:
raise LookupError('Invalid lookup path: {}'.format(path))
def set_val(s, path, value):
get_val(s, path[:-1])[path[-1]] = value
add a comment |
If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:
from functools import reduce
def get_furthest(s, path):
'''
Gets the furthest value along a given key path in a subscriptable structure.
subscriptable, list -> any
:param s: the subscriptable structure to examine
:param path: the lookup path to follow
:return: a tuple of the value at the furthest valid key, and whether the full path is valid
'''
def step_key(acc, key):
s = acc[0]
if isinstance(s, str):
return (s, False)
try:
return (s[key], acc[1])
except LookupError:
return (s, False)
return reduce(step_key, path, (s, True))
def get_val(s, path):
val, successful = get_furthest(s, path)
if successful:
return val
else:
raise LookupError('Invalid lookup path: {}'.format(path))
def set_val(s, path, value):
get_val(s, path[:-1])[path[-1]] = value
If you also want the ability to work with arbitrary json including nested lists and dicts, and nicely handle invalid lookup paths, here's my solution:
from functools import reduce
def get_furthest(s, path):
'''
Gets the furthest value along a given key path in a subscriptable structure.
subscriptable, list -> any
:param s: the subscriptable structure to examine
:param path: the lookup path to follow
:return: a tuple of the value at the furthest valid key, and whether the full path is valid
'''
def step_key(acc, key):
s = acc[0]
if isinstance(s, str):
return (s, False)
try:
return (s[key], acc[1])
except LookupError:
return (s, False)
return reduce(step_key, path, (s, True))
def get_val(s, path):
val, successful = get_furthest(s, path)
if successful:
return val
else:
raise LookupError('Invalid lookup path: {}'.format(path))
def set_val(s, path, value):
get_val(s, path[:-1])[path[-1]] = value
answered Mar 6 '18 at 21:30
Grant PalmerGrant Palmer
885
885
add a comment |
add a comment |
It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250
Here's my implementation.
Usage:
To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5
To get a nested attribute call gattr(my_dict, 1, 2)
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
add a comment |
It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250
Here's my implementation.
Usage:
To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5
To get a nested attribute call gattr(my_dict, 1, 2)
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
add a comment |
It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250
Here's my implementation.
Usage:
To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5
To get a nested attribute call gattr(my_dict, 1, 2)
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
It's satisfying to see these answers for having two static methods for setting & getting nested attributes. These solutions are way better than using nested trees https://gist.github.com/hrldcpr/2012250
Here's my implementation.
Usage:
To set nested attribute call sattr(my_dict, 1, 2, 3, 5) is equal to my_dict[1][2][3][4]=5
To get a nested attribute call gattr(my_dict, 1, 2)
def gattr(d, *attrs):
"""
This method receives a dict and list of attributes to return the innermost value of the give dict
"""
try:
for at in attrs:
d = d[at]
return d
except:
return None
def sattr(d, *attrs):
"""
Adds "val" to dict in the hierarchy mentioned via *attrs
For ex:
sattr(animals, "cat", "leg","fingers", 4) is equivalent to animals["cat"]["leg"]["fingers"]=4
This method creates necessary objects until it reaches the final depth
This behaviour is also known as autovivification and plenty of implementation are around
This implementation addresses the corner case of replacing existing primitives
https://gist.github.com/hrldcpr/2012250#gistcomment-1779319
"""
for attr in attrs[:-2]:
# If such key is not found or the value is primitive supply an empty dict
if d.get(attr) is None or isinstance(d.get(attr), dict):
d[attr] = {}
d = d[attr]
d[attrs[-2]] = attrs[-1]
answered Dec 3 '18 at 0:56
nehemiahnehemiah
4,01722549
4,01722549
add a comment |
add a comment |
Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary
dict is the dictionary containing our value
list is a list of "steps" towards our value
def getnestedvalue(dict, list):
length = len(list)
try:
for depth, key in enumerate(list):
if depth == length - 1:
output = dict[key]
return output
dict = dict[key]
except (KeyError, TypeError):
return None
return None
add a comment |
Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary
dict is the dictionary containing our value
list is a list of "steps" towards our value
def getnestedvalue(dict, list):
length = len(list)
try:
for depth, key in enumerate(list):
if depth == length - 1:
output = dict[key]
return output
dict = dict[key]
except (KeyError, TypeError):
return None
return None
add a comment |
Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary
dict is the dictionary containing our value
list is a list of "steps" towards our value
def getnestedvalue(dict, list):
length = len(list)
try:
for depth, key in enumerate(list):
if depth == length - 1:
output = dict[key]
return output
dict = dict[key]
except (KeyError, TypeError):
return None
return None
Very late to the party, but posting in case this may help someone in the future. For my use case, the following function worked the best. Works to pull any data type out of dictionary
dict is the dictionary containing our value
list is a list of "steps" towards our value
def getnestedvalue(dict, list):
length = len(list)
try:
for depth, key in enumerate(list):
if depth == length - 1:
output = dict[key]
return output
dict = dict[key]
except (KeyError, TypeError):
return None
return None
answered Dec 9 '18 at 8:43
Jack CaseyJack Casey
285
285
add a comment |
add a comment |
a method for concatenating strings:
def get_sub_object_from_path(dict_name, map_list):
for i in map_list:
_string = "['%s']" % i
dict_name += _string
value = eval(dict_name)
return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one
add a comment |
a method for concatenating strings:
def get_sub_object_from_path(dict_name, map_list):
for i in map_list:
_string = "['%s']" % i
dict_name += _string
value = eval(dict_name)
return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one
add a comment |
a method for concatenating strings:
def get_sub_object_from_path(dict_name, map_list):
for i in map_list:
_string = "['%s']" % i
dict_name += _string
value = eval(dict_name)
return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one
a method for concatenating strings:
def get_sub_object_from_path(dict_name, map_list):
for i in map_list:
_string = "['%s']" % i
dict_name += _string
value = eval(dict_name)
return value
#Sample:
_dict = {'new': 'person', 'time': {'for': 'one'}}
map_list = ['time', 'for']
print get_sub_object_from_path("_dict",map_list)
#Output:
#one
answered Dec 29 '18 at 5:10
lucaslucas
11
11
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f14692690%2faccess-nested-dictionary-items-via-a-list-of-keys%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
See also: stackoverflow.com/questions/7681301/… stackoverflow.com/a/16508328/42223
– dreftymac
Oct 30 '17 at 19:55