New column based off certain input parameter to select what columns to use - Python
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
Have a pandas dataframe that includes multiple columns of monthly finance data. I have an input of period that is specified by the person running the program. It's currently just saved as period like shown below within the code.
#coded into python
period = ?? (user adds this in from input screen)
I need to create another column of data that uses the input period number to perform a calculation of other columns.
So, in the above table I'd like to create a new column 'calculation' that depends on the period input. For example, if a period of 1 was used the following calc1 would be completed (with math actually done). Period = 2 - then calc2. Period = 3 - then calc3. I only need one column calculated depending on the period number but added three examples in below picture for example of how it'd work.
I can do this in SQL using case when. So using the input period then sum what columns I need to.
select Account #,
'&Period' AS Period,
'&Year' AS YR,
case
When '&Period' = '1' then sum(d_cf+d_1)
when '&Period' = '2' then sum(d_cf+d_1+d_2)
when '&Period' = '3' then sum(d_cf+d_1+d_2+d_3)
I am unsure on how to do this easily in python (newer learner). Yes, I could create a column that does each calculation via new column for every possible period (1-12), and then only select that column but I'd like to learn and do it a more efficient way.
Can you help more or point me in a better direction?
python python-3.x pandas
add a comment |
Have a pandas dataframe that includes multiple columns of monthly finance data. I have an input of period that is specified by the person running the program. It's currently just saved as period like shown below within the code.
#coded into python
period = ?? (user adds this in from input screen)
I need to create another column of data that uses the input period number to perform a calculation of other columns.
So, in the above table I'd like to create a new column 'calculation' that depends on the period input. For example, if a period of 1 was used the following calc1 would be completed (with math actually done). Period = 2 - then calc2. Period = 3 - then calc3. I only need one column calculated depending on the period number but added three examples in below picture for example of how it'd work.
I can do this in SQL using case when. So using the input period then sum what columns I need to.
select Account #,
'&Period' AS Period,
'&Year' AS YR,
case
When '&Period' = '1' then sum(d_cf+d_1)
when '&Period' = '2' then sum(d_cf+d_1+d_2)
when '&Period' = '3' then sum(d_cf+d_1+d_2+d_3)
I am unsure on how to do this easily in python (newer learner). Yes, I could create a column that does each calculation via new column for every possible period (1-12), and then only select that column but I'd like to learn and do it a more efficient way.
Can you help more or point me in a better direction?
python python-3.x pandas
add a comment |
Have a pandas dataframe that includes multiple columns of monthly finance data. I have an input of period that is specified by the person running the program. It's currently just saved as period like shown below within the code.
#coded into python
period = ?? (user adds this in from input screen)
I need to create another column of data that uses the input period number to perform a calculation of other columns.
So, in the above table I'd like to create a new column 'calculation' that depends on the period input. For example, if a period of 1 was used the following calc1 would be completed (with math actually done). Period = 2 - then calc2. Period = 3 - then calc3. I only need one column calculated depending on the period number but added three examples in below picture for example of how it'd work.
I can do this in SQL using case when. So using the input period then sum what columns I need to.
select Account #,
'&Period' AS Period,
'&Year' AS YR,
case
When '&Period' = '1' then sum(d_cf+d_1)
when '&Period' = '2' then sum(d_cf+d_1+d_2)
when '&Period' = '3' then sum(d_cf+d_1+d_2+d_3)
I am unsure on how to do this easily in python (newer learner). Yes, I could create a column that does each calculation via new column for every possible period (1-12), and then only select that column but I'd like to learn and do it a more efficient way.
Can you help more or point me in a better direction?
python python-3.x pandas
Have a pandas dataframe that includes multiple columns of monthly finance data. I have an input of period that is specified by the person running the program. It's currently just saved as period like shown below within the code.
#coded into python
period = ?? (user adds this in from input screen)
I need to create another column of data that uses the input period number to perform a calculation of other columns.
So, in the above table I'd like to create a new column 'calculation' that depends on the period input. For example, if a period of 1 was used the following calc1 would be completed (with math actually done). Period = 2 - then calc2. Period = 3 - then calc3. I only need one column calculated depending on the period number but added three examples in below picture for example of how it'd work.
I can do this in SQL using case when. So using the input period then sum what columns I need to.
select Account #,
'&Period' AS Period,
'&Year' AS YR,
case
When '&Period' = '1' then sum(d_cf+d_1)
when '&Period' = '2' then sum(d_cf+d_1+d_2)
when '&Period' = '3' then sum(d_cf+d_1+d_2+d_3)
I am unsure on how to do this easily in python (newer learner). Yes, I could create a column that does each calculation via new column for every possible period (1-12), and then only select that column but I'd like to learn and do it a more efficient way.
Can you help more or point me in a better direction?
python python-3.x pandas
python python-3.x pandas
asked Jan 4 at 18:40
rgh_dsargh_dsa
476
476
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
You could certainly do something like
df[['d_cf'] + [f'd_{i}' for i in range(1, period+1)]].sum(axis=1)
add a comment |
You can do this using a simple function in python:
def get_calculation(df, period=NULL):
'''
df = pandas data frame
period = integer type
'''
if period == 1:
return df.apply(lambda x: x['d_0'] +x['d_1'], axis=1)
if period == 2:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'], axis=1)
if period == 3:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'] + x['d_3'], axis=1)
new_df = get_calculation(df, period = 1)
Setup:
df = pd.DataFrame({'d_0':list(range(1,7)),
'd_1': list(range(10,70,10)),
'd_2':list(range(100,700,100)),
'd_3': list(range(1000,7000,1000))})
add a comment |
Setup:
import pandas as pd
ddict = {
'Year':['2018','2018','2018','2018','2018',],
'Account_Num':['1111','1122','1133','1144','1155'],
'd_cf':['1','2','3','4','5'],
}
data = pd.DataFrame(ddict)
Create value calculator:
def get_calcs(period):
# Convert period to integer
s = str(period)
# Convert to string value
n = int(period) + 1
# This will repeat the period number by the value of the period number
return ''.join([i * n for i in s])
Main function copies data frame, iterates through period values, and sets calculated values to the correct spot index-wise for each relevant column:
def process_data(data_frame=data, period_column='d_cf'):
# Copy data_frame argument
df = data_frame.copy(deep=True)
# Run through each value in our period column
for i in df[period_column].values.tolist():
# Create a temporary column
new_column = 'd_{}'.format(i)
# Pass the period into our calculator; Capture the result
calculated_value = get_calcs(i)
# Create a new column based on our period number
df[new_column] = ''
# Use indexing to place the calculated value into our desired location
df.loc[df[period_column] == i, new_column] = calculated_value
# Return the result
return df
Start:
Year Account_Num d_cf
0 2018 1111 1
1 2018 1122 2
2 2018 1133 3
3 2018 1144 4
4 2018 1155 5
Result:
process_data(data)
Year Account_Num d_cf d_1 d_2 d_3 d_4 d_5
0 2018 1111 1 11
1 2018 1122 2 222
2 2018 1133 3 3333
3 2018 1144 4 44444
4 2018 1155 5 555555
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54044392%2fnew-column-based-off-certain-input-parameter-to-select-what-columns-to-use-pyt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
You could certainly do something like
df[['d_cf'] + [f'd_{i}' for i in range(1, period+1)]].sum(axis=1)
add a comment |
You could certainly do something like
df[['d_cf'] + [f'd_{i}' for i in range(1, period+1)]].sum(axis=1)
add a comment |
You could certainly do something like
df[['d_cf'] + [f'd_{i}' for i in range(1, period+1)]].sum(axis=1)
You could certainly do something like
df[['d_cf'] + [f'd_{i}' for i in range(1, period+1)]].sum(axis=1)
answered Jan 4 at 19:07
N.ClarkeN.Clarke
1985
1985
add a comment |
add a comment |
You can do this using a simple function in python:
def get_calculation(df, period=NULL):
'''
df = pandas data frame
period = integer type
'''
if period == 1:
return df.apply(lambda x: x['d_0'] +x['d_1'], axis=1)
if period == 2:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'], axis=1)
if period == 3:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'] + x['d_3'], axis=1)
new_df = get_calculation(df, period = 1)
Setup:
df = pd.DataFrame({'d_0':list(range(1,7)),
'd_1': list(range(10,70,10)),
'd_2':list(range(100,700,100)),
'd_3': list(range(1000,7000,1000))})
add a comment |
You can do this using a simple function in python:
def get_calculation(df, period=NULL):
'''
df = pandas data frame
period = integer type
'''
if period == 1:
return df.apply(lambda x: x['d_0'] +x['d_1'], axis=1)
if period == 2:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'], axis=1)
if period == 3:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'] + x['d_3'], axis=1)
new_df = get_calculation(df, period = 1)
Setup:
df = pd.DataFrame({'d_0':list(range(1,7)),
'd_1': list(range(10,70,10)),
'd_2':list(range(100,700,100)),
'd_3': list(range(1000,7000,1000))})
add a comment |
You can do this using a simple function in python:
def get_calculation(df, period=NULL):
'''
df = pandas data frame
period = integer type
'''
if period == 1:
return df.apply(lambda x: x['d_0'] +x['d_1'], axis=1)
if period == 2:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'], axis=1)
if period == 3:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'] + x['d_3'], axis=1)
new_df = get_calculation(df, period = 1)
Setup:
df = pd.DataFrame({'d_0':list(range(1,7)),
'd_1': list(range(10,70,10)),
'd_2':list(range(100,700,100)),
'd_3': list(range(1000,7000,1000))})
You can do this using a simple function in python:
def get_calculation(df, period=NULL):
'''
df = pandas data frame
period = integer type
'''
if period == 1:
return df.apply(lambda x: x['d_0'] +x['d_1'], axis=1)
if period == 2:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'], axis=1)
if period == 3:
return df.apply(lambda x: x['d_0'] +x['d_1']+ x['d_2'] + x['d_3'], axis=1)
new_df = get_calculation(df, period = 1)
Setup:
df = pd.DataFrame({'d_0':list(range(1,7)),
'd_1': list(range(10,70,10)),
'd_2':list(range(100,700,100)),
'd_3': list(range(1000,7000,1000))})
answered Jan 4 at 19:06
YOLOYOLO
5,5731525
5,5731525
add a comment |
add a comment |
Setup:
import pandas as pd
ddict = {
'Year':['2018','2018','2018','2018','2018',],
'Account_Num':['1111','1122','1133','1144','1155'],
'd_cf':['1','2','3','4','5'],
}
data = pd.DataFrame(ddict)
Create value calculator:
def get_calcs(period):
# Convert period to integer
s = str(period)
# Convert to string value
n = int(period) + 1
# This will repeat the period number by the value of the period number
return ''.join([i * n for i in s])
Main function copies data frame, iterates through period values, and sets calculated values to the correct spot index-wise for each relevant column:
def process_data(data_frame=data, period_column='d_cf'):
# Copy data_frame argument
df = data_frame.copy(deep=True)
# Run through each value in our period column
for i in df[period_column].values.tolist():
# Create a temporary column
new_column = 'd_{}'.format(i)
# Pass the period into our calculator; Capture the result
calculated_value = get_calcs(i)
# Create a new column based on our period number
df[new_column] = ''
# Use indexing to place the calculated value into our desired location
df.loc[df[period_column] == i, new_column] = calculated_value
# Return the result
return df
Start:
Year Account_Num d_cf
0 2018 1111 1
1 2018 1122 2
2 2018 1133 3
3 2018 1144 4
4 2018 1155 5
Result:
process_data(data)
Year Account_Num d_cf d_1 d_2 d_3 d_4 d_5
0 2018 1111 1 11
1 2018 1122 2 222
2 2018 1133 3 3333
3 2018 1144 4 44444
4 2018 1155 5 555555
add a comment |
Setup:
import pandas as pd
ddict = {
'Year':['2018','2018','2018','2018','2018',],
'Account_Num':['1111','1122','1133','1144','1155'],
'd_cf':['1','2','3','4','5'],
}
data = pd.DataFrame(ddict)
Create value calculator:
def get_calcs(period):
# Convert period to integer
s = str(period)
# Convert to string value
n = int(period) + 1
# This will repeat the period number by the value of the period number
return ''.join([i * n for i in s])
Main function copies data frame, iterates through period values, and sets calculated values to the correct spot index-wise for each relevant column:
def process_data(data_frame=data, period_column='d_cf'):
# Copy data_frame argument
df = data_frame.copy(deep=True)
# Run through each value in our period column
for i in df[period_column].values.tolist():
# Create a temporary column
new_column = 'd_{}'.format(i)
# Pass the period into our calculator; Capture the result
calculated_value = get_calcs(i)
# Create a new column based on our period number
df[new_column] = ''
# Use indexing to place the calculated value into our desired location
df.loc[df[period_column] == i, new_column] = calculated_value
# Return the result
return df
Start:
Year Account_Num d_cf
0 2018 1111 1
1 2018 1122 2
2 2018 1133 3
3 2018 1144 4
4 2018 1155 5
Result:
process_data(data)
Year Account_Num d_cf d_1 d_2 d_3 d_4 d_5
0 2018 1111 1 11
1 2018 1122 2 222
2 2018 1133 3 3333
3 2018 1144 4 44444
4 2018 1155 5 555555
add a comment |
Setup:
import pandas as pd
ddict = {
'Year':['2018','2018','2018','2018','2018',],
'Account_Num':['1111','1122','1133','1144','1155'],
'd_cf':['1','2','3','4','5'],
}
data = pd.DataFrame(ddict)
Create value calculator:
def get_calcs(period):
# Convert period to integer
s = str(period)
# Convert to string value
n = int(period) + 1
# This will repeat the period number by the value of the period number
return ''.join([i * n for i in s])
Main function copies data frame, iterates through period values, and sets calculated values to the correct spot index-wise for each relevant column:
def process_data(data_frame=data, period_column='d_cf'):
# Copy data_frame argument
df = data_frame.copy(deep=True)
# Run through each value in our period column
for i in df[period_column].values.tolist():
# Create a temporary column
new_column = 'd_{}'.format(i)
# Pass the period into our calculator; Capture the result
calculated_value = get_calcs(i)
# Create a new column based on our period number
df[new_column] = ''
# Use indexing to place the calculated value into our desired location
df.loc[df[period_column] == i, new_column] = calculated_value
# Return the result
return df
Start:
Year Account_Num d_cf
0 2018 1111 1
1 2018 1122 2
2 2018 1133 3
3 2018 1144 4
4 2018 1155 5
Result:
process_data(data)
Year Account_Num d_cf d_1 d_2 d_3 d_4 d_5
0 2018 1111 1 11
1 2018 1122 2 222
2 2018 1133 3 3333
3 2018 1144 4 44444
4 2018 1155 5 555555
Setup:
import pandas as pd
ddict = {
'Year':['2018','2018','2018','2018','2018',],
'Account_Num':['1111','1122','1133','1144','1155'],
'd_cf':['1','2','3','4','5'],
}
data = pd.DataFrame(ddict)
Create value calculator:
def get_calcs(period):
# Convert period to integer
s = str(period)
# Convert to string value
n = int(period) + 1
# This will repeat the period number by the value of the period number
return ''.join([i * n for i in s])
Main function copies data frame, iterates through period values, and sets calculated values to the correct spot index-wise for each relevant column:
def process_data(data_frame=data, period_column='d_cf'):
# Copy data_frame argument
df = data_frame.copy(deep=True)
# Run through each value in our period column
for i in df[period_column].values.tolist():
# Create a temporary column
new_column = 'd_{}'.format(i)
# Pass the period into our calculator; Capture the result
calculated_value = get_calcs(i)
# Create a new column based on our period number
df[new_column] = ''
# Use indexing to place the calculated value into our desired location
df.loc[df[period_column] == i, new_column] = calculated_value
# Return the result
return df
Start:
Year Account_Num d_cf
0 2018 1111 1
1 2018 1122 2
2 2018 1133 3
3 2018 1144 4
4 2018 1155 5
Result:
process_data(data)
Year Account_Num d_cf d_1 d_2 d_3 d_4 d_5
0 2018 1111 1 11
1 2018 1122 2 222
2 2018 1133 3 3333
3 2018 1144 4 44444
4 2018 1155 5 555555
edited Jan 4 at 19:38
answered Jan 4 at 19:26
Mark MorettoMark Moretto
38428
38428
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54044392%2fnew-column-based-off-certain-input-parameter-to-select-what-columns-to-use-pyt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown