Create multiple columns based on date
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I started to work with pandas recently and during testing with 'date' I have found this challenge. Given this dataframe:
df = pd.DataFrame({'id': [123, 431, 652, 763, 234],
'time': ['8/1/2017', '6/1/2015', '7/1/2016', '9/1/2014', '12/1/2018']})
Create the new dataframe with backdate columns look like this:
id time time1 time2 time3 time4 time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
I tries with these codes:
df['time'] = pd.to_datetime(df['time'], errors='coerce') #Object to Date
df['time1'] = df['time'] - pd.DateOffset(months=1)
df['time2'] = df['time'] - pd.DateOffset(months=2)
df['time3'] = df['time'] - pd.DateOffset(months=3)
df['time4'] = df['time'] - pd.DateOffset(months=4)
df['time5'] = df['time'] - pd.DateOffset(months=5)
Are there anyway to solve this problem faster and more efficient? I've already tested several methods to create the backdate. However I don't know how to do it with multiple columns. Because if the data requires to backdate 24 months, I have to copy and paste a lot (manually).
python python-3.x pandas date dataframe
add a comment |
I started to work with pandas recently and during testing with 'date' I have found this challenge. Given this dataframe:
df = pd.DataFrame({'id': [123, 431, 652, 763, 234],
'time': ['8/1/2017', '6/1/2015', '7/1/2016', '9/1/2014', '12/1/2018']})
Create the new dataframe with backdate columns look like this:
id time time1 time2 time3 time4 time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
I tries with these codes:
df['time'] = pd.to_datetime(df['time'], errors='coerce') #Object to Date
df['time1'] = df['time'] - pd.DateOffset(months=1)
df['time2'] = df['time'] - pd.DateOffset(months=2)
df['time3'] = df['time'] - pd.DateOffset(months=3)
df['time4'] = df['time'] - pd.DateOffset(months=4)
df['time5'] = df['time'] - pd.DateOffset(months=5)
Are there anyway to solve this problem faster and more efficient? I've already tested several methods to create the backdate. However I don't know how to do it with multiple columns. Because if the data requires to backdate 24 months, I have to copy and paste a lot (manually).
python python-3.x pandas date dataframe
1
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56
add a comment |
I started to work with pandas recently and during testing with 'date' I have found this challenge. Given this dataframe:
df = pd.DataFrame({'id': [123, 431, 652, 763, 234],
'time': ['8/1/2017', '6/1/2015', '7/1/2016', '9/1/2014', '12/1/2018']})
Create the new dataframe with backdate columns look like this:
id time time1 time2 time3 time4 time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
I tries with these codes:
df['time'] = pd.to_datetime(df['time'], errors='coerce') #Object to Date
df['time1'] = df['time'] - pd.DateOffset(months=1)
df['time2'] = df['time'] - pd.DateOffset(months=2)
df['time3'] = df['time'] - pd.DateOffset(months=3)
df['time4'] = df['time'] - pd.DateOffset(months=4)
df['time5'] = df['time'] - pd.DateOffset(months=5)
Are there anyway to solve this problem faster and more efficient? I've already tested several methods to create the backdate. However I don't know how to do it with multiple columns. Because if the data requires to backdate 24 months, I have to copy and paste a lot (manually).
python python-3.x pandas date dataframe
I started to work with pandas recently and during testing with 'date' I have found this challenge. Given this dataframe:
df = pd.DataFrame({'id': [123, 431, 652, 763, 234],
'time': ['8/1/2017', '6/1/2015', '7/1/2016', '9/1/2014', '12/1/2018']})
Create the new dataframe with backdate columns look like this:
id time time1 time2 time3 time4 time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
I tries with these codes:
df['time'] = pd.to_datetime(df['time'], errors='coerce') #Object to Date
df['time1'] = df['time'] - pd.DateOffset(months=1)
df['time2'] = df['time'] - pd.DateOffset(months=2)
df['time3'] = df['time'] - pd.DateOffset(months=3)
df['time4'] = df['time'] - pd.DateOffset(months=4)
df['time5'] = df['time'] - pd.DateOffset(months=5)
Are there anyway to solve this problem faster and more efficient? I've already tested several methods to create the backdate. However I don't know how to do it with multiple columns. Because if the data requires to backdate 24 months, I have to copy and paste a lot (manually).
python python-3.x pandas date dataframe
python python-3.x pandas date dataframe
edited Jan 4 at 3:59
Long_NgV
asked Jan 4 at 2:51
Long_NgVLong_NgV
426
426
1
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56
add a comment |
1
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56
1
1
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56
add a comment |
1 Answer
1
active
oldest
votes
Here is one way using date_range
with concat
s=df.time.apply(lambda x : pd.date_range(end=x,periods =6,freq='MS')[::-1].tolist())
df=pd.concat([df,pd.DataFrame(s.tolist(),index=df.index).add_prefix('Time').iloc[:,1:]],axis=1)
df
id time Time1 Time2 Time3 Time4 Time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54032552%2fcreate-multiple-columns-based-on-date%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here is one way using date_range
with concat
s=df.time.apply(lambda x : pd.date_range(end=x,periods =6,freq='MS')[::-1].tolist())
df=pd.concat([df,pd.DataFrame(s.tolist(),index=df.index).add_prefix('Time').iloc[:,1:]],axis=1)
df
id time Time1 Time2 Time3 Time4 Time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
add a comment |
Here is one way using date_range
with concat
s=df.time.apply(lambda x : pd.date_range(end=x,periods =6,freq='MS')[::-1].tolist())
df=pd.concat([df,pd.DataFrame(s.tolist(),index=df.index).add_prefix('Time').iloc[:,1:]],axis=1)
df
id time Time1 Time2 Time3 Time4 Time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
add a comment |
Here is one way using date_range
with concat
s=df.time.apply(lambda x : pd.date_range(end=x,periods =6,freq='MS')[::-1].tolist())
df=pd.concat([df,pd.DataFrame(s.tolist(),index=df.index).add_prefix('Time').iloc[:,1:]],axis=1)
df
id time Time1 Time2 Time3 Time4 Time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
Here is one way using date_range
with concat
s=df.time.apply(lambda x : pd.date_range(end=x,periods =6,freq='MS')[::-1].tolist())
df=pd.concat([df,pd.DataFrame(s.tolist(),index=df.index).add_prefix('Time').iloc[:,1:]],axis=1)
df
id time Time1 Time2 Time3 Time4 Time5
0 123 2017-08-01 2017-07-01 2017-06-01 2017-05-01 2017-04-01 2017-03-01
1 431 2015-06-01 2015-05-01 2015-04-01 2015-03-01 2015-02-01 2015-01-01
2 652 2016-07-01 2016-06-01 2016-05-01 2016-04-01 2016-03-01 2016-02-01
3 763 2014-09-01 2014-08-01 2014-07-01 2014-06-01 2014-05-01 2014-04-01
4 234 2018-12-01 2018-11-01 2018-10-01 2018-09-01 2018-08-01 2018-07-01
answered Jan 4 at 3:05
Wen-BenWen-Ben
124k83771
124k83771
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
add a comment |
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
Thank you sir, could you please explain a little bit about how to calculate 's'?
– Long_NgV
Jan 4 at 10:28
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54032552%2fcreate-multiple-columns-based-on-date%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Possible duplicate of Offset date for a Pandas DataFrame date index
– Stephen Rauch
Jan 4 at 2:56