Conflicting Results When Manually Calculating First Principal Component using prcomp












4















I am calculating the PCA for the iris dataset as follows:



data(iris)
ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)


This is the first row of the iris dataset:



head(iris, 1)
#Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#1 5.1 3.5 1.4 0.2 setosa


For the first row, I can see that the value of the first principal component is -2.257141:



head(ir.pca$x, 1)
# PC1 PC2 PC3 PC4
#[1,] -2.257141 -0.4784238 0.1272796 0.02408751


But when I try extract the loadings:



ir.pca$rotation[, 1]
Sepal.Length Sepal.Width Petal.Length Petal.Width
0.5210659 -0.2693474 0.5804131 0.5648565


and calculate the first principal component myself:



0.5210659 * 5.1  + -0.2693474 * 3.5  + 0.5804131 * 1.4 + 0.5648565 * 0.2


I get a different result of 2.64027.



Why is that?










share|improve this question





























    4















    I am calculating the PCA for the iris dataset as follows:



    data(iris)
    ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)


    This is the first row of the iris dataset:



    head(iris, 1)
    #Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    #1 5.1 3.5 1.4 0.2 setosa


    For the first row, I can see that the value of the first principal component is -2.257141:



    head(ir.pca$x, 1)
    # PC1 PC2 PC3 PC4
    #[1,] -2.257141 -0.4784238 0.1272796 0.02408751


    But when I try extract the loadings:



    ir.pca$rotation[, 1]
    Sepal.Length Sepal.Width Petal.Length Petal.Width
    0.5210659 -0.2693474 0.5804131 0.5648565


    and calculate the first principal component myself:



    0.5210659 * 5.1  + -0.2693474 * 3.5  + 0.5804131 * 1.4 + 0.5648565 * 0.2


    I get a different result of 2.64027.



    Why is that?










    share|improve this question



























      4












      4








      4


      0






      I am calculating the PCA for the iris dataset as follows:



      data(iris)
      ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)


      This is the first row of the iris dataset:



      head(iris, 1)
      #Sepal.Length Sepal.Width Petal.Length Petal.Width Species
      #1 5.1 3.5 1.4 0.2 setosa


      For the first row, I can see that the value of the first principal component is -2.257141:



      head(ir.pca$x, 1)
      # PC1 PC2 PC3 PC4
      #[1,] -2.257141 -0.4784238 0.1272796 0.02408751


      But when I try extract the loadings:



      ir.pca$rotation[, 1]
      Sepal.Length Sepal.Width Petal.Length Petal.Width
      0.5210659 -0.2693474 0.5804131 0.5648565


      and calculate the first principal component myself:



      0.5210659 * 5.1  + -0.2693474 * 3.5  + 0.5804131 * 1.4 + 0.5648565 * 0.2


      I get a different result of 2.64027.



      Why is that?










      share|improve this question
















      I am calculating the PCA for the iris dataset as follows:



      data(iris)
      ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)


      This is the first row of the iris dataset:



      head(iris, 1)
      #Sepal.Length Sepal.Width Petal.Length Petal.Width Species
      #1 5.1 3.5 1.4 0.2 setosa


      For the first row, I can see that the value of the first principal component is -2.257141:



      head(ir.pca$x, 1)
      # PC1 PC2 PC3 PC4
      #[1,] -2.257141 -0.4784238 0.1272796 0.02408751


      But when I try extract the loadings:



      ir.pca$rotation[, 1]
      Sepal.Length Sepal.Width Petal.Length Petal.Width
      0.5210659 -0.2693474 0.5804131 0.5648565


      and calculate the first principal component myself:



      0.5210659 * 5.1  + -0.2693474 * 3.5  + 0.5804131 * 1.4 + 0.5648565 * 0.2


      I get a different result of 2.64027.



      Why is that?







      r pca predict






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jan 3 at 14:22









      AkselA

      4,66921326




      4,66921326










      asked Jan 3 at 13:43









      orrymrorrymr

      532824




      532824
























          1 Answer
          1






          active

          oldest

          votes


















          4














          Scaling is the issue.



          Either drop scaling in the prcomp() call



          data(iris)
          ir.pca <- prcomp(iris[, 1:4], center = FALSE, scale. = FALSE)

          head(ir.pca$x, 1)
          # PC1 PC2 PC3 PC4
          # [1,] -5.912747 2.302033 0.007401536 0.003087706

          ir.pca$rotation[, 1] %*% t(iris[1, 1:4])
          # 1
          # [1,] -5.912747


          Or scale iris before you manually apply the loadings



          ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

          head(ir.pca$x, 1)
          # PC1 PC2 PC3 PC4
          # [1,] -2.257141 -0.4784238 0.1272796 0.02408751

          ir.pca$rotation[, 1] %*% scale(iris[, 1:4])[1,]
          # [,1]
          # [1,] -2.257141





          share|improve this answer
























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54023496%2fconflicting-results-when-manually-calculating-first-principal-component-using-pr%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4














            Scaling is the issue.



            Either drop scaling in the prcomp() call



            data(iris)
            ir.pca <- prcomp(iris[, 1:4], center = FALSE, scale. = FALSE)

            head(ir.pca$x, 1)
            # PC1 PC2 PC3 PC4
            # [1,] -5.912747 2.302033 0.007401536 0.003087706

            ir.pca$rotation[, 1] %*% t(iris[1, 1:4])
            # 1
            # [1,] -5.912747


            Or scale iris before you manually apply the loadings



            ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

            head(ir.pca$x, 1)
            # PC1 PC2 PC3 PC4
            # [1,] -2.257141 -0.4784238 0.1272796 0.02408751

            ir.pca$rotation[, 1] %*% scale(iris[, 1:4])[1,]
            # [,1]
            # [1,] -2.257141





            share|improve this answer




























              4














              Scaling is the issue.



              Either drop scaling in the prcomp() call



              data(iris)
              ir.pca <- prcomp(iris[, 1:4], center = FALSE, scale. = FALSE)

              head(ir.pca$x, 1)
              # PC1 PC2 PC3 PC4
              # [1,] -5.912747 2.302033 0.007401536 0.003087706

              ir.pca$rotation[, 1] %*% t(iris[1, 1:4])
              # 1
              # [1,] -5.912747


              Or scale iris before you manually apply the loadings



              ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

              head(ir.pca$x, 1)
              # PC1 PC2 PC3 PC4
              # [1,] -2.257141 -0.4784238 0.1272796 0.02408751

              ir.pca$rotation[, 1] %*% scale(iris[, 1:4])[1,]
              # [,1]
              # [1,] -2.257141





              share|improve this answer


























                4












                4








                4







                Scaling is the issue.



                Either drop scaling in the prcomp() call



                data(iris)
                ir.pca <- prcomp(iris[, 1:4], center = FALSE, scale. = FALSE)

                head(ir.pca$x, 1)
                # PC1 PC2 PC3 PC4
                # [1,] -5.912747 2.302033 0.007401536 0.003087706

                ir.pca$rotation[, 1] %*% t(iris[1, 1:4])
                # 1
                # [1,] -5.912747


                Or scale iris before you manually apply the loadings



                ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

                head(ir.pca$x, 1)
                # PC1 PC2 PC3 PC4
                # [1,] -2.257141 -0.4784238 0.1272796 0.02408751

                ir.pca$rotation[, 1] %*% scale(iris[, 1:4])[1,]
                # [,1]
                # [1,] -2.257141





                share|improve this answer













                Scaling is the issue.



                Either drop scaling in the prcomp() call



                data(iris)
                ir.pca <- prcomp(iris[, 1:4], center = FALSE, scale. = FALSE)

                head(ir.pca$x, 1)
                # PC1 PC2 PC3 PC4
                # [1,] -5.912747 2.302033 0.007401536 0.003087706

                ir.pca$rotation[, 1] %*% t(iris[1, 1:4])
                # 1
                # [1,] -5.912747


                Or scale iris before you manually apply the loadings



                ir.pca <- prcomp(iris[, 1:4], center = TRUE, scale. = TRUE)

                head(ir.pca$x, 1)
                # PC1 PC2 PC3 PC4
                # [1,] -2.257141 -0.4784238 0.1272796 0.02408751

                ir.pca$rotation[, 1] %*% scale(iris[, 1:4])[1,]
                # [,1]
                # [1,] -2.257141






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 3 at 14:17









                AkselAAkselA

                4,66921326




                4,66921326
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54023496%2fconflicting-results-when-manually-calculating-first-principal-component-using-pr%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Monofisismo

                    Angular Downloading a file using contenturl with Basic Authentication

                    Olmecas