Uncertain about required input shape for neural network regression












0














I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.



What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'



Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence



Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:



[[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
[111],
[111],
...,
[104],
[104],
[104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
[36.5 ],
[36.5 ],
...,
[ 4.625],
[ 4.625],
[ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.75],
[-13.75],
[-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.13],
[-13.13],
[-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
[45.9 ],
[45.9 ],
...,
[14.63],
[14.63],
[14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
[43.6 ],
[43.6 ],
...,
[12.75],
[12.75],
[12.75]]))]]


The model I created so far looks like this:



def GradientDescent(features, labels, mode):

# create an dense layer as input layer with 6 units for 6 features and ReLU activation function
input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)

# declare a dense layer with 12 units and ReLU activation function
hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)

# declare a dense layer with 12 units and ReLU activation function
hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)

# declare a dense layer with 6 units and ReLU activation function
hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)

# declare a dense layer with 1 unit as output layer
logits = tf.layers.dense(inputs=hidden3, units=1)

predictions = tf.argmax(input=logits, axis=1)

# return the estimator when predicting (no loss and training function needs to be defined here)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

# declare the loss function sparse softmax cross entropy
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)

# declare a decreasing learning rate
# starter_learning_rate = 0.1
# global_step = tf.Variable(0, trainable=False)
# learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)

# declare a gradient descent optimizer with a decreasing learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())

# define the accuracy error metric
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
}

#tf.summary.scalar('accuracy', accuracy)

return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)


I'm giving the data to train like this:



HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")

train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)


I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!










share|improve this question









New contributor




Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

























    0














    I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.



    What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'



    Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence



    Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:



    [[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
    [111],
    [111],
    ...,
    [104],
    [104],
    [104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
    [36.5 ],
    [36.5 ],
    ...,
    [ 4.625],
    [ 4.625],
    [ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
    [ 35.9 ],
    [ 35.9 ],
    ...,
    [-13.75],
    [-13.75],
    [-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
    [ 35.9 ],
    [ 35.9 ],
    ...,
    [-13.13],
    [-13.13],
    [-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
    [45.9 ],
    [45.9 ],
    ...,
    [14.63],
    [14.63],
    [14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
    [43.6 ],
    [43.6 ],
    ...,
    [12.75],
    [12.75],
    [12.75]]))]]


    The model I created so far looks like this:



    def GradientDescent(features, labels, mode):

    # create an dense layer as input layer with 6 units for 6 features and ReLU activation function
    input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)

    # declare a dense layer with 12 units and ReLU activation function
    hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)

    # declare a dense layer with 12 units and ReLU activation function
    hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)

    # declare a dense layer with 6 units and ReLU activation function
    hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)

    # declare a dense layer with 1 unit as output layer
    logits = tf.layers.dense(inputs=hidden3, units=1)

    predictions = tf.argmax(input=logits, axis=1)

    # return the estimator when predicting (no loss and training function needs to be defined here)
    if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    # declare the loss function sparse softmax cross entropy
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)

    # declare a decreasing learning rate
    # starter_learning_rate = 0.1
    # global_step = tf.Variable(0, trainable=False)
    # learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)

    # declare a gradient descent optimizer with a decreasing learning rate
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

    train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())

    # define the accuracy error metric
    eval_metric_ops = {
    "accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
    }

    #tf.summary.scalar('accuracy', accuracy)

    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)


    I'm giving the data to train like this:



    HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")

    train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
    HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)


    I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!










    share|improve this question









    New contributor




    Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.























      0












      0








      0







      I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.



      What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'



      Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence



      Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:



      [[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
      [111],
      [111],
      ...,
      [104],
      [104],
      [104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
      [36.5 ],
      [36.5 ],
      ...,
      [ 4.625],
      [ 4.625],
      [ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
      [ 35.9 ],
      [ 35.9 ],
      ...,
      [-13.75],
      [-13.75],
      [-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
      [ 35.9 ],
      [ 35.9 ],
      ...,
      [-13.13],
      [-13.13],
      [-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
      [45.9 ],
      [45.9 ],
      ...,
      [14.63],
      [14.63],
      [14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
      [43.6 ],
      [43.6 ],
      ...,
      [12.75],
      [12.75],
      [12.75]]))]]


      The model I created so far looks like this:



      def GradientDescent(features, labels, mode):

      # create an dense layer as input layer with 6 units for 6 features and ReLU activation function
      input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)

      # declare a dense layer with 12 units and ReLU activation function
      hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)

      # declare a dense layer with 12 units and ReLU activation function
      hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)

      # declare a dense layer with 6 units and ReLU activation function
      hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)

      # declare a dense layer with 1 unit as output layer
      logits = tf.layers.dense(inputs=hidden3, units=1)

      predictions = tf.argmax(input=logits, axis=1)

      # return the estimator when predicting (no loss and training function needs to be defined here)
      if mode == tf.estimator.ModeKeys.PREDICT:
      return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

      # declare the loss function sparse softmax cross entropy
      loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)

      # declare a decreasing learning rate
      # starter_learning_rate = 0.1
      # global_step = tf.Variable(0, trainable=False)
      # learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)

      # declare a gradient descent optimizer with a decreasing learning rate
      optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

      train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())

      # define the accuracy error metric
      eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
      }

      #tf.summary.scalar('accuracy', accuracy)

      return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)


      I'm giving the data to train like this:



      HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")

      train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
      HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)


      I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!










      share|improve this question









      New contributor




      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.



      What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'



      Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence



      Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:



      [[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
      [111],
      [111],
      ...,
      [104],
      [104],
      [104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
      [36.5 ],
      [36.5 ],
      ...,
      [ 4.625],
      [ 4.625],
      [ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
      [ 35.9 ],
      [ 35.9 ],
      ...,
      [-13.75],
      [-13.75],
      [-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
      [ 35.9 ],
      [ 35.9 ],
      ...,
      [-13.13],
      [-13.13],
      [-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
      [45.9 ],
      [45.9 ],
      ...,
      [14.63],
      [14.63],
      [14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
      [43.6 ],
      [43.6 ],
      ...,
      [12.75],
      [12.75],
      [12.75]]))]]


      The model I created so far looks like this:



      def GradientDescent(features, labels, mode):

      # create an dense layer as input layer with 6 units for 6 features and ReLU activation function
      input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)

      # declare a dense layer with 12 units and ReLU activation function
      hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)

      # declare a dense layer with 12 units and ReLU activation function
      hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)

      # declare a dense layer with 6 units and ReLU activation function
      hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)

      # declare a dense layer with 1 unit as output layer
      logits = tf.layers.dense(inputs=hidden3, units=1)

      predictions = tf.argmax(input=logits, axis=1)

      # return the estimator when predicting (no loss and training function needs to be defined here)
      if mode == tf.estimator.ModeKeys.PREDICT:
      return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

      # declare the loss function sparse softmax cross entropy
      loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)

      # declare a decreasing learning rate
      # starter_learning_rate = 0.1
      # global_step = tf.Variable(0, trainable=False)
      # learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)

      # declare a gradient descent optimizer with a decreasing learning rate
      optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

      train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())

      # define the accuracy error metric
      eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
      }

      #tf.summary.scalar('accuracy', accuracy)

      return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)


      I'm giving the data to train like this:



      HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")

      train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
      HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)


      I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!







      python python-3.x list tensorflow input






      share|improve this question









      New contributor




      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 21 hours ago









      Matthijs

      1,001925




      1,001925






      New contributor




      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 22 hours ago









      Richard

      1




      1




      New contributor




      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Richard is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Richard is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53942738%2funcertain-about-required-input-shape-for-neural-network-regression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          Richard is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          Richard is a new contributor. Be nice, and check out our Code of Conduct.













          Richard is a new contributor. Be nice, and check out our Code of Conduct.












          Richard is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53942738%2funcertain-about-required-input-shape-for-neural-network-regression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Monofisismo

          Angular Downloading a file using contenturl with Basic Authentication

          Olmecas