Uncertain about required input shape for neural network regression
I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.
What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'
Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence
Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:
[[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
[111],
[111],
...,
[104],
[104],
[104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
[36.5 ],
[36.5 ],
...,
[ 4.625],
[ 4.625],
[ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.75],
[-13.75],
[-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.13],
[-13.13],
[-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
[45.9 ],
[45.9 ],
...,
[14.63],
[14.63],
[14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
[43.6 ],
[43.6 ],
...,
[12.75],
[12.75],
[12.75]]))]]
The model I created so far looks like this:
def GradientDescent(features, labels, mode):
# create an dense layer as input layer with 6 units for 6 features and ReLU activation function
input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)
# declare a dense layer with 6 units and ReLU activation function
hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)
# declare a dense layer with 1 unit as output layer
logits = tf.layers.dense(inputs=hidden3, units=1)
predictions = tf.argmax(input=logits, axis=1)
# return the estimator when predicting (no loss and training function needs to be defined here)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# declare the loss function sparse softmax cross entropy
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)
# declare a decreasing learning rate
# starter_learning_rate = 0.1
# global_step = tf.Variable(0, trainable=False)
# learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)
# declare a gradient descent optimizer with a decreasing learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
# define the accuracy error metric
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
}
#tf.summary.scalar('accuracy', accuracy)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)
I'm giving the data to train like this:
HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")
train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)
I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!
python python-3.x list tensorflow input
New contributor
add a comment |
I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.
What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'
Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence
Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:
[[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
[111],
[111],
...,
[104],
[104],
[104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
[36.5 ],
[36.5 ],
...,
[ 4.625],
[ 4.625],
[ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.75],
[-13.75],
[-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.13],
[-13.13],
[-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
[45.9 ],
[45.9 ],
...,
[14.63],
[14.63],
[14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
[43.6 ],
[43.6 ],
...,
[12.75],
[12.75],
[12.75]]))]]
The model I created so far looks like this:
def GradientDescent(features, labels, mode):
# create an dense layer as input layer with 6 units for 6 features and ReLU activation function
input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)
# declare a dense layer with 6 units and ReLU activation function
hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)
# declare a dense layer with 1 unit as output layer
logits = tf.layers.dense(inputs=hidden3, units=1)
predictions = tf.argmax(input=logits, axis=1)
# return the estimator when predicting (no loss and training function needs to be defined here)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# declare the loss function sparse softmax cross entropy
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)
# declare a decreasing learning rate
# starter_learning_rate = 0.1
# global_step = tf.Variable(0, trainable=False)
# learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)
# declare a gradient descent optimizer with a decreasing learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
# define the accuracy error metric
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
}
#tf.summary.scalar('accuracy', accuracy)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)
I'm giving the data to train like this:
HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")
train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)
I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!
python python-3.x list tensorflow input
New contributor
add a comment |
I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.
What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'
Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence
Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:
[[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
[111],
[111],
...,
[104],
[104],
[104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
[36.5 ],
[36.5 ],
...,
[ 4.625],
[ 4.625],
[ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.75],
[-13.75],
[-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.13],
[-13.13],
[-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
[45.9 ],
[45.9 ],
...,
[14.63],
[14.63],
[14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
[43.6 ],
[43.6 ],
...,
[12.75],
[12.75],
[12.75]]))]]
The model I created so far looks like this:
def GradientDescent(features, labels, mode):
# create an dense layer as input layer with 6 units for 6 features and ReLU activation function
input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)
# declare a dense layer with 6 units and ReLU activation function
hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)
# declare a dense layer with 1 unit as output layer
logits = tf.layers.dense(inputs=hidden3, units=1)
predictions = tf.argmax(input=logits, axis=1)
# return the estimator when predicting (no loss and training function needs to be defined here)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# declare the loss function sparse softmax cross entropy
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)
# declare a decreasing learning rate
# starter_learning_rate = 0.1
# global_step = tf.Variable(0, trainable=False)
# learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)
# declare a gradient descent optimizer with a decreasing learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
# define the accuracy error metric
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
}
#tf.summary.scalar('accuracy', accuracy)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)
I'm giving the data to train like this:
HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")
train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)
I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!
python python-3.x list tensorflow input
New contributor
I'm trying to do some regression analysis on some flight data. I loaded my parameters (previous .mat files) and now I have 6 parameters as predictors in the format list and one response parameter as well in format list.
What I did so far is combining the predictors into one combined list. Now I wanted to create a model and train it but as I expected, the format list is not compatibel. The error I got is: AttributeError: 'list' object has no attribute 'shape'
Thus I tried to convert the lists into a tensor with tf.convert_to_tensor. Unfortunately it is not working. The error I receive now is: ValueError: setting an array element with a sequence
Unfortunately I only learned how to do image classification with CNNs in tensorflow and I'm not sure which format is the right one to give my data to the input layer. Right now my Predictors consists of 6 Parameters taken every 0.1 seconds. The list is shaped like this:
[[('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:17:10 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRQuantity_Center', array([[111],
[111],
[111],
...,
[104],
[104],
[104]], dtype=uint8))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:32:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('RSVRTemp_Center', array([[36.5 ],
[36.5 ],
[36.5 ],
...,
[ 4.625],
[ 4.625],
[ 4.625]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:00 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp1_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.75],
[-13.75],
[-13.75]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:29 2018'), ('__version__', '1.0'), ('__globals__', ), ('AirDrivenPumpTemp2_Center', array([[ 35.9 ],
[ 35.9 ],
[ 35.9 ],
...,
[-13.13],
[-13.13],
[-13.13]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:34:12 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp1_Center', array([[45.9 ],
[45.9 ],
[45.9 ],
...,
[14.63],
[14.63],
[14.63]]))], [('__header__', b'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Dec 26 19:33:54 2018'), ('__version__', '1.0'), ('__globals__', ), ('ElecPumpTemp2_Center', array([[43.6 ],
[43.6 ],
[43.6 ],
...,
[12.75],
[12.75],
[12.75]]))]]
The model I created so far looks like this:
def GradientDescent(features, labels, mode):
# create an dense layer as input layer with 6 units for 6 features and ReLU activation function
input_layer = tf.layers.dense(inputs=features["x"], units=6, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden1 = tf.layers.dense(inputs=input_layer, units=12, activation=tf.nn.relu)
# declare a dense layer with 12 units and ReLU activation function
hidden2 = tf.layers.dense(inputs=hidden1, units=12, activation=tf.nn.relu)
# declare a dense layer with 6 units and ReLU activation function
hidden3 = tf.layers.dense(inputs=hidden2, units=6, activation=tf.nn.relu)
# declare a dense layer with 1 unit as output layer
logits = tf.layers.dense(inputs=hidden3, units=1)
predictions = tf.argmax(input=logits, axis=1)
# return the estimator when predicting (no loss and training function needs to be defined here)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# declare the loss function sparse softmax cross entropy
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,logits=logits)
# declare a decreasing learning rate
# starter_learning_rate = 0.1
# global_step = tf.Variable(0, trainable=False)
# learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 10000, 0.96, staircase=True)
# declare a gradient descent optimizer with a decreasing learning rate
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
# define the accuracy error metric
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions)
}
#tf.summary.scalar('accuracy', accuracy)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, predictions=predictions, eval_metric_ops=eval_metric_ops)
I'm giving the data to train like this:
HydSysPress_Center_PTRTRQ = tf.estimator.Estimator(model_fn=GradientDescent, model_dir="GradDescent_10000")
train_input = tf.estimator.inputs.numpy_input_fn(x={"x": Predictors}, y=HydSysPress_Center, batch_size=64, num_epochs=None, shuffle=False)
HydSysPress_Center_PTRTRQ.train(input_fn=train_input, steps=100)
I want to start training the model without mixing up the columns and rows of the parameters, since every parameter is taken with a fixed time stamp. For every helpful answer I would be very thankful!
python python-3.x list tensorflow input
python python-3.x list tensorflow input
New contributor
New contributor
edited 21 hours ago
Matthijs
1,001925
1,001925
New contributor
asked 22 hours ago
Richard
1
1
New contributor
New contributor
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Richard is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53942738%2funcertain-about-required-input-shape-for-neural-network-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Richard is a new contributor. Be nice, and check out our Code of Conduct.
Richard is a new contributor. Be nice, and check out our Code of Conduct.
Richard is a new contributor. Be nice, and check out our Code of Conduct.
Richard is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53942738%2funcertain-about-required-input-shape-for-neural-network-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown