Error in TensorFlow program
I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.
I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.
My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.
import test2
import tensorflow as tf
feed_input = test2.read_data_sets()
learning_rate = 0.001
training_epochs = 100
batch_size = 1716
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
n_input = 30
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None])
def multilayer_perceptron(_X, _weights, _biases):
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
#Hidden layer with RELU activationn_hidden_3
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))
return tf.matmul(layer_3, weights['out']) + biases['out']
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([1]))
}
pred = multilayer_perceptron(x, weights, biases)
n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))
cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(feed_input.train._num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
runfile('/mnt/sdb6/Projects/StockML/demo1.py',
wdir='/mnt/sdb6/Projects/StockML')
Reloaded modules: tensorflow.python.ops.nn_grad,
tensorflow.python.training.momentum,
. . . .
tensorflow.python.util.protobuf,
google.protobuf.internal.enum_type_wrapper,
tensorflow.python.ops.nn_ops, tensorflow.python,
tensorflow.python.platform.test,
google.protobuf.internal.api_implementation, tensorflow,
google.protobuf.internal.encoder
Traceback (most recent call last):
File "", line 1, in
runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 685, in runfile
execfile(filename, namespace)
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 78, in execfile
builtins.execfile(filename, *where)
File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 406, in _do_run
except tf_session.StatusNotOK as e:
AttributeError: 'module' object has no attribute 'StatusNotOK'
python-2.7 machine-learning neural-network tensorflow
add a comment |
I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.
I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.
My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.
import test2
import tensorflow as tf
feed_input = test2.read_data_sets()
learning_rate = 0.001
training_epochs = 100
batch_size = 1716
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
n_input = 30
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None])
def multilayer_perceptron(_X, _weights, _biases):
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
#Hidden layer with RELU activationn_hidden_3
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))
return tf.matmul(layer_3, weights['out']) + biases['out']
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([1]))
}
pred = multilayer_perceptron(x, weights, biases)
n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))
cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(feed_input.train._num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
runfile('/mnt/sdb6/Projects/StockML/demo1.py',
wdir='/mnt/sdb6/Projects/StockML')
Reloaded modules: tensorflow.python.ops.nn_grad,
tensorflow.python.training.momentum,
. . . .
tensorflow.python.util.protobuf,
google.protobuf.internal.enum_type_wrapper,
tensorflow.python.ops.nn_ops, tensorflow.python,
tensorflow.python.platform.test,
google.protobuf.internal.api_implementation, tensorflow,
google.protobuf.internal.encoder
Traceback (most recent call last):
File "", line 1, in
runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 685, in runfile
execfile(filename, namespace)
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 78, in execfile
builtins.execfile(filename, *where)
File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 406, in _do_run
except tf_session.StatusNotOK as e:
AttributeError: 'module' object has no attribute 'StatusNotOK'
python-2.7 machine-learning neural-network tensorflow
add a comment |
I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.
I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.
My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.
import test2
import tensorflow as tf
feed_input = test2.read_data_sets()
learning_rate = 0.001
training_epochs = 100
batch_size = 1716
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
n_input = 30
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None])
def multilayer_perceptron(_X, _weights, _biases):
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
#Hidden layer with RELU activationn_hidden_3
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))
return tf.matmul(layer_3, weights['out']) + biases['out']
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([1]))
}
pred = multilayer_perceptron(x, weights, biases)
n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))
cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(feed_input.train._num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
runfile('/mnt/sdb6/Projects/StockML/demo1.py',
wdir='/mnt/sdb6/Projects/StockML')
Reloaded modules: tensorflow.python.ops.nn_grad,
tensorflow.python.training.momentum,
. . . .
tensorflow.python.util.protobuf,
google.protobuf.internal.enum_type_wrapper,
tensorflow.python.ops.nn_ops, tensorflow.python,
tensorflow.python.platform.test,
google.protobuf.internal.api_implementation, tensorflow,
google.protobuf.internal.encoder
Traceback (most recent call last):
File "", line 1, in
runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 685, in runfile
execfile(filename, namespace)
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 78, in execfile
builtins.execfile(filename, *where)
File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 406, in _do_run
except tf_session.StatusNotOK as e:
AttributeError: 'module' object has no attribute 'StatusNotOK'
python-2.7 machine-learning neural-network tensorflow
I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.
I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.
My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.
import test2
import tensorflow as tf
feed_input = test2.read_data_sets()
learning_rate = 0.001
training_epochs = 100
batch_size = 1716
display_step = 1
n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
n_input = 30
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None])
def multilayer_perceptron(_X, _weights, _biases):
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
#Hidden layer with RELU activationn_hidden_3
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))
return tf.matmul(layer_3, weights['out']) + biases['out']
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([1]))
}
pred = multilayer_perceptron(x, weights, biases)
n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))
cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(feed_input.train._num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
print "Optimization Finished!"
runfile('/mnt/sdb6/Projects/StockML/demo1.py',
wdir='/mnt/sdb6/Projects/StockML')
Reloaded modules: tensorflow.python.ops.nn_grad,
tensorflow.python.training.momentum,
. . . .
tensorflow.python.util.protobuf,
google.protobuf.internal.enum_type_wrapper,
tensorflow.python.ops.nn_ops, tensorflow.python,
tensorflow.python.platform.test,
google.protobuf.internal.api_implementation, tensorflow,
google.protobuf.internal.encoder
Traceback (most recent call last):
File "", line 1, in
runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 685, in runfile
execfile(filename, namespace)
File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 78, in execfile
builtins.execfile(filename, *where)
File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 406, in _do_run
except tf_session.StatusNotOK as e:
AttributeError: 'module' object has no attribute 'StatusNotOK'
python-2.7 machine-learning neural-network tensorflow
python-2.7 machine-learning neural-network tensorflow
asked Dec 7 '15 at 14:25
Rutwij MRutwij M
133
133
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Protobuf error is usually an installation issue , run it in a virtual env
# On Mac:
$ sudo easy_install pip # If pip is not already installed
$ sudo pip install --upgrade virtualenv
Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
Then activate the virtualenv:
$ source bin/activate # If using bash
$ source bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Inside the virtualenv, install TensorFlow:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can then run your TensorFlow program like:
(tensorflow)$ python tensorflow/models/image/mnist/convolutional.py
# When you are done using TensorFlow:
(tensorflow)$ deactivate # Deactivate the virtualenv
$ # Your prompt should change back
add a comment |
If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).
Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).
add a comment |
Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.
For knowledge purpose, you should know there are 5 logging levels:
DEBUG
INFO
WARN
ERROR
FATAL
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f34135878%2ferror-in-tensorflow-program%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Protobuf error is usually an installation issue , run it in a virtual env
# On Mac:
$ sudo easy_install pip # If pip is not already installed
$ sudo pip install --upgrade virtualenv
Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
Then activate the virtualenv:
$ source bin/activate # If using bash
$ source bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Inside the virtualenv, install TensorFlow:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can then run your TensorFlow program like:
(tensorflow)$ python tensorflow/models/image/mnist/convolutional.py
# When you are done using TensorFlow:
(tensorflow)$ deactivate # Deactivate the virtualenv
$ # Your prompt should change back
add a comment |
Protobuf error is usually an installation issue , run it in a virtual env
# On Mac:
$ sudo easy_install pip # If pip is not already installed
$ sudo pip install --upgrade virtualenv
Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
Then activate the virtualenv:
$ source bin/activate # If using bash
$ source bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Inside the virtualenv, install TensorFlow:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can then run your TensorFlow program like:
(tensorflow)$ python tensorflow/models/image/mnist/convolutional.py
# When you are done using TensorFlow:
(tensorflow)$ deactivate # Deactivate the virtualenv
$ # Your prompt should change back
add a comment |
Protobuf error is usually an installation issue , run it in a virtual env
# On Mac:
$ sudo easy_install pip # If pip is not already installed
$ sudo pip install --upgrade virtualenv
Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
Then activate the virtualenv:
$ source bin/activate # If using bash
$ source bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Inside the virtualenv, install TensorFlow:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can then run your TensorFlow program like:
(tensorflow)$ python tensorflow/models/image/mnist/convolutional.py
# When you are done using TensorFlow:
(tensorflow)$ deactivate # Deactivate the virtualenv
$ # Your prompt should change back
Protobuf error is usually an installation issue , run it in a virtual env
# On Mac:
$ sudo easy_install pip # If pip is not already installed
$ sudo pip install --upgrade virtualenv
Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
$ virtualenv --system-site-packages ~/tensorflow
$ cd ~/tensorflow
Then activate the virtualenv:
$ source bin/activate # If using bash
$ source bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change
Inside the virtualenv, install TensorFlow:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
You can then run your TensorFlow program like:
(tensorflow)$ python tensorflow/models/image/mnist/convolutional.py
# When you are done using TensorFlow:
(tensorflow)$ deactivate # Deactivate the virtualenv
$ # Your prompt should change back
answered Dec 8 '15 at 3:08
user2879934user2879934
194110
194110
add a comment |
add a comment |
If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).
Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).
add a comment |
If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).
Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).
add a comment |
If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).
Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).
If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).
Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).
answered Feb 17 '16 at 3:53
Yuan TangYuan Tang
596312
596312
add a comment |
add a comment |
Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.
For knowledge purpose, you should know there are 5 logging levels:
DEBUG
INFO
WARN
ERROR
FATAL
add a comment |
Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.
For knowledge purpose, you should know there are 5 logging levels:
DEBUG
INFO
WARN
ERROR
FATAL
add a comment |
Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.
For knowledge purpose, you should know there are 5 logging levels:
DEBUG
INFO
WARN
ERROR
FATAL
Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.
For knowledge purpose, you should know there are 5 logging levels:
DEBUG
INFO
WARN
ERROR
FATAL
edited Dec 29 '18 at 11:09
סטנלי גרונן
1,63472044
1,63472044
answered Dec 29 '18 at 10:35
Sarthak DalabeheraSarthak Dalabehera
163
163
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f34135878%2ferror-in-tensorflow-program%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown