Error in TensorFlow program












1















I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.



I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.



My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.



import test2
import tensorflow as tf

feed_input = test2.read_data_sets()

learning_rate = 0.001
training_epochs = 100
batch_size = 1716
display_step = 1

n_hidden_1 = 256
n_hidden_2 = 256
n_hidden_3 = 256
n_input = 30

x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None])

def multilayer_perceptron(_X, _weights, _biases):
#Hidden layer with RELU activation
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
#Hidden layer with RELU activationn_hidden_3
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))

return tf.matmul(layer_3, weights['out']) + biases['out']

weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'out': tf.Variable(tf.random_normal([1]))
}

pred = multilayer_perceptron(x, weights, biases)

n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))

cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)

init = tf.initialize_all_variables()

with tf.Session() as sess:
sess.run(init)

# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(feed_input.train._num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

print "Optimization Finished!"



runfile('/mnt/sdb6/Projects/StockML/demo1.py',



wdir='/mnt/sdb6/Projects/StockML')



Reloaded modules: tensorflow.python.ops.nn_grad,



tensorflow.python.training.momentum,



. . . .



tensorflow.python.util.protobuf,



google.protobuf.internal.enum_type_wrapper,



tensorflow.python.ops.nn_ops, tensorflow.python,



tensorflow.python.platform.test,



google.protobuf.internal.api_implementation, tensorflow,



google.protobuf.internal.encoder



Traceback (most recent call last):



File "", line 1, in
runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')



File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 685, in runfile
execfile(filename, namespace)



File
"/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
line 78, in execfile
builtins.execfile(filename, *where)



File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})



File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)



File
"/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
line 406, in _do_run
except tf_session.StatusNotOK as e:



AttributeError: 'module' object has no attribute 'StatusNotOK'











share|improve this question



























    1















    I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.



    I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.



    My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.



    import test2
    import tensorflow as tf

    feed_input = test2.read_data_sets()

    learning_rate = 0.001
    training_epochs = 100
    batch_size = 1716
    display_step = 1

    n_hidden_1 = 256
    n_hidden_2 = 256
    n_hidden_3 = 256
    n_input = 30

    x = tf.placeholder("float", [None, n_input])
    y = tf.placeholder("float", [None])

    def multilayer_perceptron(_X, _weights, _biases):
    #Hidden layer with RELU activation
    layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
    #Hidden layer with RELU activationn_hidden_3
    layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
    layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))

    return tf.matmul(layer_3, weights['out']) + biases['out']

    weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
    'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
    }
    biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'b3': tf.Variable(tf.random_normal([n_hidden_3])),
    'out': tf.Variable(tf.random_normal([1]))
    }

    pred = multilayer_perceptron(x, weights, biases)

    n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))

    cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)

    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)

    init = tf.initialize_all_variables()

    with tf.Session() as sess:
    sess.run(init)

    # Training cycle
    for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(feed_input.train._num_examples / batch_size)
    # Loop over all batches
    for i in range(total_batch):
    batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
    # Fit training using batch data
    sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
    # Compute average loss
    avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
    # Display logs per epoch step
    if epoch % display_step == 0:
    print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

    print "Optimization Finished!"



    runfile('/mnt/sdb6/Projects/StockML/demo1.py',



    wdir='/mnt/sdb6/Projects/StockML')



    Reloaded modules: tensorflow.python.ops.nn_grad,



    tensorflow.python.training.momentum,



    . . . .



    tensorflow.python.util.protobuf,



    google.protobuf.internal.enum_type_wrapper,



    tensorflow.python.ops.nn_ops, tensorflow.python,



    tensorflow.python.platform.test,



    google.protobuf.internal.api_implementation, tensorflow,



    google.protobuf.internal.encoder



    Traceback (most recent call last):



    File "", line 1, in
    runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')



    File
    "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
    line 685, in runfile
    execfile(filename, namespace)



    File
    "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
    line 78, in execfile
    builtins.execfile(filename, *where)



    File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
    sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})



    File
    "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
    line 345, in run
    results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)



    File
    "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
    line 406, in _do_run
    except tf_session.StatusNotOK as e:



    AttributeError: 'module' object has no attribute 'StatusNotOK'











    share|improve this question

























      1












      1








      1








      I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.



      I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.



      My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.



      import test2
      import tensorflow as tf

      feed_input = test2.read_data_sets()

      learning_rate = 0.001
      training_epochs = 100
      batch_size = 1716
      display_step = 1

      n_hidden_1 = 256
      n_hidden_2 = 256
      n_hidden_3 = 256
      n_input = 30

      x = tf.placeholder("float", [None, n_input])
      y = tf.placeholder("float", [None])

      def multilayer_perceptron(_X, _weights, _biases):
      #Hidden layer with RELU activation
      layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
      #Hidden layer with RELU activationn_hidden_3
      layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
      layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))

      return tf.matmul(layer_3, weights['out']) + biases['out']

      weights = {
      'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
      'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
      'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
      'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
      }
      biases = {
      'b1': tf.Variable(tf.random_normal([n_hidden_1])),
      'b2': tf.Variable(tf.random_normal([n_hidden_2])),
      'b3': tf.Variable(tf.random_normal([n_hidden_3])),
      'out': tf.Variable(tf.random_normal([1]))
      }

      pred = multilayer_perceptron(x, weights, biases)

      n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))

      cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)

      init = tf.initialize_all_variables()

      with tf.Session() as sess:
      sess.run(init)

      # Training cycle
      for epoch in range(training_epochs):
      avg_cost = 0
      total_batch = int(feed_input.train._num_examples / batch_size)
      # Loop over all batches
      for i in range(total_batch):
      batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
      # Fit training using batch data
      sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
      # Compute average loss
      avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
      # Display logs per epoch step
      if epoch % display_step == 0:
      print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

      print "Optimization Finished!"



      runfile('/mnt/sdb6/Projects/StockML/demo1.py',



      wdir='/mnt/sdb6/Projects/StockML')



      Reloaded modules: tensorflow.python.ops.nn_grad,



      tensorflow.python.training.momentum,



      . . . .



      tensorflow.python.util.protobuf,



      google.protobuf.internal.enum_type_wrapper,



      tensorflow.python.ops.nn_ops, tensorflow.python,



      tensorflow.python.platform.test,



      google.protobuf.internal.api_implementation, tensorflow,



      google.protobuf.internal.encoder



      Traceback (most recent call last):



      File "", line 1, in
      runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')



      File
      "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
      line 685, in runfile
      execfile(filename, namespace)



      File
      "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
      line 78, in execfile
      builtins.execfile(filename, *where)



      File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
      sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})



      File
      "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
      line 345, in run
      results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)



      File
      "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
      line 406, in _do_run
      except tf_session.StatusNotOK as e:



      AttributeError: 'module' object has no attribute 'StatusNotOK'











      share|improve this question














      I am learning TensorFlow and I stumble upon this example code for creating simple multi-layer sigmoid network. The program in the link is for MNIST database and hand written digit classification.



      I want to train a network for regression task. I have 30 inputs(float) which is used to predict one output(float). So I tweaked the code to change the task from classification to regression.



      My problem is that I'm getting an error in tf.Session.run(). The code and the error log is given below.



      import test2
      import tensorflow as tf

      feed_input = test2.read_data_sets()

      learning_rate = 0.001
      training_epochs = 100
      batch_size = 1716
      display_step = 1

      n_hidden_1 = 256
      n_hidden_2 = 256
      n_hidden_3 = 256
      n_input = 30

      x = tf.placeholder("float", [None, n_input])
      y = tf.placeholder("float", [None])

      def multilayer_perceptron(_X, _weights, _biases):
      #Hidden layer with RELU activation
      layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1']))
      #Hidden layer with RELU activationn_hidden_3
      layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2']))
      layer_3 = tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3']))

      return tf.matmul(layer_3, weights['out']) + biases['out']

      weights = {
      'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
      'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
      'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
      'out': tf.Variable(tf.random_normal([n_hidden_3, 1]))
      }
      biases = {
      'b1': tf.Variable(tf.random_normal([n_hidden_1])),
      'b2': tf.Variable(tf.random_normal([n_hidden_2])),
      'b3': tf.Variable(tf.random_normal([n_hidden_3])),
      'out': tf.Variable(tf.random_normal([1]))
      }

      pred = multilayer_perceptron(x, weights, biases)

      n_pred = tf.mul(pred, tf.convert_to_tensor(10000.00))

      cost = tf.nn.sigmoid_cross_entropy_with_logits(n_pred, y)

      optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)

      init = tf.initialize_all_variables()

      with tf.Session() as sess:
      sess.run(init)

      # Training cycle
      for epoch in range(training_epochs):
      avg_cost = 0
      total_batch = int(feed_input.train._num_examples / batch_size)
      # Loop over all batches
      for i in range(total_batch):
      batch_xs, batch_ys = feed_input.train.next_batch(batch_size)
      # Fit training using batch data
      sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
      # Compute average loss
      avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}) / total_batch
      # Display logs per epoch step
      if epoch % display_step == 0:
      print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)

      print "Optimization Finished!"



      runfile('/mnt/sdb6/Projects/StockML/demo1.py',



      wdir='/mnt/sdb6/Projects/StockML')



      Reloaded modules: tensorflow.python.ops.nn_grad,



      tensorflow.python.training.momentum,



      . . . .



      tensorflow.python.util.protobuf,



      google.protobuf.internal.enum_type_wrapper,



      tensorflow.python.ops.nn_ops, tensorflow.python,



      tensorflow.python.platform.test,



      google.protobuf.internal.api_implementation, tensorflow,



      google.protobuf.internal.encoder



      Traceback (most recent call last):



      File "", line 1, in
      runfile('/mnt/sdb6/Projects/StockML/demo1.py', wdir='/mnt/sdb6/Projects/StockML')



      File
      "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
      line 685, in runfile
      execfile(filename, namespace)



      File
      "/usr/lib/python2.7/dist-packages/spyderlib/widgets/externalshell/sitecustomize.py",
      line 78, in execfile
      builtins.execfile(filename, *where)



      File "/mnt/sdb6/Projects/StockML/demo1.py", line 69, in
      sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})



      File
      "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
      line 345, in run
      results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)



      File
      "/home/rammak/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py",
      line 406, in _do_run
      except tf_session.StatusNotOK as e:



      AttributeError: 'module' object has no attribute 'StatusNotOK'








      python-2.7 machine-learning neural-network tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Dec 7 '15 at 14:25









      Rutwij MRutwij M

      133




      133
























          3 Answers
          3






          active

          oldest

          votes


















          3














          Protobuf error is usually an installation issue , run it in a virtual env



          # On Mac:
          $ sudo easy_install pip # If pip is not already installed
          $ sudo pip install --upgrade virtualenv
          Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
          $ virtualenv --system-site-packages ~/tensorflow
          $ cd ~/tensorflow
          Then activate the virtualenv:
          $ source bin/activate # If using bash
          $ source bin/activate.csh # If using csh
          (tensorflow)$ # Your prompt should change
          Inside the virtualenv, install TensorFlow:
          (tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
          You can then run your TensorFlow program like:
          (tensorflow)$ python tensorflow/models/image/mnist/convolutional.py

          # When you are done using TensorFlow:
          (tensorflow)$ deactivate # Deactivate the virtualenv

          $ # Your prompt should change back





          share|improve this answer































            0














            If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).



            Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).






            share|improve this answer































              0














              Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.

              For knowledge purpose, you should know there are 5 logging levels:





              1. DEBUG


              2. INFO


              3. WARN


              4. ERROR


              5. FATAL






              share|improve this answer

























                Your Answer






                StackExchange.ifUsing("editor", function () {
                StackExchange.using("externalEditor", function () {
                StackExchange.using("snippets", function () {
                StackExchange.snippets.init();
                });
                });
                }, "code-snippets");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "1"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f34135878%2ferror-in-tensorflow-program%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3














                Protobuf error is usually an installation issue , run it in a virtual env



                # On Mac:
                $ sudo easy_install pip # If pip is not already installed
                $ sudo pip install --upgrade virtualenv
                Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
                $ virtualenv --system-site-packages ~/tensorflow
                $ cd ~/tensorflow
                Then activate the virtualenv:
                $ source bin/activate # If using bash
                $ source bin/activate.csh # If using csh
                (tensorflow)$ # Your prompt should change
                Inside the virtualenv, install TensorFlow:
                (tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
                You can then run your TensorFlow program like:
                (tensorflow)$ python tensorflow/models/image/mnist/convolutional.py

                # When you are done using TensorFlow:
                (tensorflow)$ deactivate # Deactivate the virtualenv

                $ # Your prompt should change back





                share|improve this answer




























                  3














                  Protobuf error is usually an installation issue , run it in a virtual env



                  # On Mac:
                  $ sudo easy_install pip # If pip is not already installed
                  $ sudo pip install --upgrade virtualenv
                  Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
                  $ virtualenv --system-site-packages ~/tensorflow
                  $ cd ~/tensorflow
                  Then activate the virtualenv:
                  $ source bin/activate # If using bash
                  $ source bin/activate.csh # If using csh
                  (tensorflow)$ # Your prompt should change
                  Inside the virtualenv, install TensorFlow:
                  (tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
                  You can then run your TensorFlow program like:
                  (tensorflow)$ python tensorflow/models/image/mnist/convolutional.py

                  # When you are done using TensorFlow:
                  (tensorflow)$ deactivate # Deactivate the virtualenv

                  $ # Your prompt should change back





                  share|improve this answer


























                    3












                    3








                    3







                    Protobuf error is usually an installation issue , run it in a virtual env



                    # On Mac:
                    $ sudo easy_install pip # If pip is not already installed
                    $ sudo pip install --upgrade virtualenv
                    Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
                    $ virtualenv --system-site-packages ~/tensorflow
                    $ cd ~/tensorflow
                    Then activate the virtualenv:
                    $ source bin/activate # If using bash
                    $ source bin/activate.csh # If using csh
                    (tensorflow)$ # Your prompt should change
                    Inside the virtualenv, install TensorFlow:
                    (tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
                    You can then run your TensorFlow program like:
                    (tensorflow)$ python tensorflow/models/image/mnist/convolutional.py

                    # When you are done using TensorFlow:
                    (tensorflow)$ deactivate # Deactivate the virtualenv

                    $ # Your prompt should change back





                    share|improve this answer













                    Protobuf error is usually an installation issue , run it in a virtual env



                    # On Mac:
                    $ sudo easy_install pip # If pip is not already installed
                    $ sudo pip install --upgrade virtualenv
                    Next, set up a new virtualenv environment. To set it up in the directory ~/tensorflow, run:
                    $ virtualenv --system-site-packages ~/tensorflow
                    $ cd ~/tensorflow
                    Then activate the virtualenv:
                    $ source bin/activate # If using bash
                    $ source bin/activate.csh # If using csh
                    (tensorflow)$ # Your prompt should change
                    Inside the virtualenv, install TensorFlow:
                    (tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
                    You can then run your TensorFlow program like:
                    (tensorflow)$ python tensorflow/models/image/mnist/convolutional.py

                    # When you are done using TensorFlow:
                    (tensorflow)$ deactivate # Deactivate the virtualenv

                    $ # Your prompt should change back






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Dec 8 '15 at 3:08









                    user2879934user2879934

                    194110




                    194110

























                        0














                        If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).



                        Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).






                        share|improve this answer




























                          0














                          If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).



                          Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).






                          share|improve this answer


























                            0












                            0








                            0







                            If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).



                            Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).






                            share|improve this answer













                            If you just begin to learn TensorFlow, I would suggest you trying out examples in TensorFlow/skflow first and then once you are more familiar with TensorFlow it would be fairly easy for you to insert TensorFlow code to build a custom model you want (there are also examples for this).



                            Hope those examples for images and text understanding could get you started and let us know if you encounter any issues! (post issues or tag skflow in SO).







                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered Feb 17 '16 at 3:53









                            Yuan TangYuan Tang

                            596312




                            596312























                                0














                                Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.

                                For knowledge purpose, you should know there are 5 logging levels:





                                1. DEBUG


                                2. INFO


                                3. WARN


                                4. ERROR


                                5. FATAL






                                share|improve this answer






























                                  0














                                  Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.

                                  For knowledge purpose, you should know there are 5 logging levels:





                                  1. DEBUG


                                  2. INFO


                                  3. WARN


                                  4. ERROR


                                  5. FATAL






                                  share|improve this answer




























                                    0












                                    0








                                    0







                                    Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.

                                    For knowledge purpose, you should know there are 5 logging levels:





                                    1. DEBUG


                                    2. INFO


                                    3. WARN


                                    4. ERROR


                                    5. FATAL






                                    share|improve this answer















                                    Change your logging level from WARN to INFO, so that can get a better visualization of the error you're getting.

                                    For knowledge purpose, you should know there are 5 logging levels:





                                    1. DEBUG


                                    2. INFO


                                    3. WARN


                                    4. ERROR


                                    5. FATAL







                                    share|improve this answer














                                    share|improve this answer



                                    share|improve this answer








                                    edited Dec 29 '18 at 11:09









                                    סטנלי גרונן

                                    1,63472044




                                    1,63472044










                                    answered Dec 29 '18 at 10:35









                                    Sarthak DalabeheraSarthak Dalabehera

                                    163




                                    163






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Stack Overflow!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f34135878%2ferror-in-tensorflow-program%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Monofisismo

                                        Angular Downloading a file using contenturl with Basic Authentication

                                        Olmecas